预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE\*MERGEFORMAT6 2017—2018学年度第一学期半期考试 高二理科数学试卷 (答题时间:120分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个正确选项,请将正确选项填到答题卡处 1.下列语句中,是命题的个数是 ①|x+2|=0;②-5∈Z;③π∉R;④{0}∈N. A.1ﻩ B.2C.3ﻩ D.4 2.设P是椭圆上的一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于 A.4B.5C.8D.10 3.现要完成下列3项抽样调查: ①从8盒饼干中抽取2盒进行质量检查; ②学校报告厅有32排座位,每排有20个座位,报告会恰好坐满了学生,报告会结束后,为了听取学生的意见,需要请32名学生进行座谈. ③某学校共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在教学改革方面上的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是 A.①简单随机抽样,②分层抽样,③系统抽样 B.①系统抽样,②简单随机抽样,③分层抽样 C.①分层抽样,②系统抽样,③简单随机抽样 D.①简单随机抽样,②系统抽样,③分层抽样 4.已知集合A={2,a},B={1,2,3},则“a=3”是“A⊆B”的 A.充分不必要条件ﻩﻩB.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.执行如图所示的程序框图,输出的S的值为30, 则输入的n为 A.2ﻩB.3 C.4ﻩD.5 6.已知点P是边长为4的正方形内任一点,则 点P到四个顶点的距离均大于2的概率是 A.eq\f(π,4)ﻩB.eq\f(1,4) C.1-eq\f(π,4)ﻩD.eq\f(π,3) 7.若一个椭圆的长轴长、短轴长和焦距成等差数列,则该椭圆的离心率为 A.eq\f(1,5)B.eq\f(2,5)C.eq\f(3,5)D.eq\f(4,5) 8.一个小孩任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为 A.eq\f(2,9)B.eq\f(9,100)C.eq\f(3,50)D.eq\f(3,100) 9.椭圆的左,右焦点分别为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|的值为 A.4 B.eq\f(7,2)C.eq\r(3) D.eq\f(\r(3),2) 10.若椭圆的两个焦点与它的短轴的两个端点刚好是一个正方形的四个顶点,则椭圆的离心率为 A.eq\f(\r(6),3)B.eq\f(\r(5),3)C.eq\f(\r(3),2)D.eq\f(\r(2),2) 11.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是 A.x2+y2=4B.x2+y2=2 C.x2+y2=4(x≠±2)D.x2+y2=2(x≠±2) 12.现有10个数,其平均数是4,且这10个数的平方和是200,那么这组数的标准差是 A.4B.3C.2D.1 二、填空题(本大题共4小题,每小题5分,共20分) 13.已知椭圆的焦距为4, 则k的值为. 14.命题p:∀x∈R,x2+x+1>0, 则p为. 15.执行如图所示的程序框图,则输出的 结果是. 16.在区间[-3,3]上随机取一个数x, 则使得lg(x-1)<lg2成立的概率 为. 三、解答题(本大题共6小题,共70分.解答时,应写出必要的文字说明、证明过程或演算步骤) 17.(满分10分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率. 18.(满分12分)某汽车厂生产A,B,C三类小汽车,每类小汽车均有豪华型和标准型两种型号,某月的产量如下表(单位:辆): 汽车A汽车B汽车C豪华型100200x标准型300400600按A、B、C三类用分层抽样的方法在这个月生产的小汽车中抽取50辆,其中A类小汽车抽取10辆. (1)求x的值; (2)用分层抽样的方法在C类小汽车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆标准型小汽车的概率; 19.(满分10分)已知椭圆的中心在原点,两焦点F1,F2在x轴上,且过点A(-4,3).若F1A⊥F2A,求椭圆的标准方程. 20.(满分12分)已知椭圆C的两条对