预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

金属表面缺陷的机器视觉检测方法研究与实现 Title:ResearchandImplementationofMachineVisionInspectionMethodforSurfaceDefectsonMetal Abstract: Surfacedefectsonmetalplayacrucialroleindeterminingthequalityandperformanceofmetalproducts.Therefore,thedevelopmentofanefficientandaccurateinspectionmethodtodetectthesedefectsisofgreatsignificance.Thispaperaimstoinvestigateandimplementamachinevision-basedinspectionmethodforsurfacedefectsonmetal.Theproposedmethodcombinesimageprocessingtechniqueswithmachinelearningalgorithmstoachieveautomaticdefectdetection.Experimentalresultsdemonstratetheeffectivenessandfeasibilityoftheproposedmethodinaccuratelydetectingvarioustypesofsurfacedefectsonmetal. 1.Introduction Surfacedefectsonmetalcansignificantlyaffectthemechanicalandfunctionalpropertiesofmetalproducts.Traditionalmanualinspectionmethodsaretime-consumingandsubjective,leadingtoinconsistentandunreliableresults.Asaresult,theintegrationofmachinevisiontechnologyintodefectdetectionhasgainedincreasingattention.Thissectionprovidesanoverviewoftheimportanceofsurfacedefectdetectioninthemetalindustryandhighlightsthemotivationandobjectivesofthisresearch. 2.LiteratureReview Thissectionreviewstheexistingliteratureonsurfacedefectdetectioninthemetalindustry.Variousapproaches,includingimageprocessingtechniques,artificialintelligence,andmachinelearningalgorithms,havebeenexploredfordefectdetection.Theadvantagesandlimitationsofthesemethodsarediscussed.Additionally,recentadvancementsandsuccessfulapplicationsinthisfieldarepresentedtoestablishafoundationfortheproposedresearch. 3.Methodology Thissectionpresentstheproposedmethodologyforthemachinevisioninspectionofsurfacedefectsonmetal.Firstly,theimageacquisitionprocessisdiscussed,includingcameraselection,lightingconditions,andimagepreprocessingtechniques.Then,variousimageprocessingtechniques,suchasfiltering,thresholding,andedgedetection,areappliedtoenhancethedefectfeatures.Next,featureextractionandselectionmethodsaredescribedtoobtainrelevantdefectcharacteristics.Lastly,machinelearni