预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

机械臂轨迹跟踪控制——基于EC-RBF神经网络的机械臂模型参考自适应控制 Abstract: ThispaperproposesamodelreferenceadaptivecontrolmethodbasedonEC-RBFneuralnetworkfortrajectorytrackingcontrolofaroboticarm.Theaimofthisresearchistoachieveaccurateandrobustcontroloftheroboticarm'smotion,allowingittofollowdesiredtrajectorieseffectively.TheEC-RBFneuralnetworkisusedtomodelthedynamicsoftheroboticarm,andanadaptivecontrolalgorithmbasedontheLyapunovtheoryisdesignedtotrackthedesiredtrajectories.Simulationresultsshowthattheproposedcontrolmethodhasgoodperformanceintermsoftrajectorytrackingaccuracyandrobustness. Keywords:roboticarm,trajectorytrackingcontrol,EC-RBFneuralnetwork,adaptivecontrol,Lyapunovtheory 1.Introduction Roboticarmsarewidelyusedinvariousapplicationssuchasindustrialautomation,medicalsurgery,andspaceexploration.Precisemotioncontrolofroboticarmsisofgreatimportanceforachievingdesiredtasks.Trajectorytrackingcontrol,whichreferstotheabilityofaroboticarmtoaccuratelyfollowagiventrajectory,isakeyaspectofroboticarmcontrol. Traditionaltrajectorytrackingcontrolmethodsforroboticarmsusuallyrelyonaccuratemathematicalmodelsofthearmdynamics.However,thesemodelsareoftendifficulttoobtainduetothecomplexandnonlinearnatureoftheroboticarmsystem.Moreover,theymaybeaffectedbyexternaldisturbancesanduncertainties.Therefore,itischallengingtodesigncontrolalgorithmsthatcanachieveaccurateandrobusttrajectorytrackingcontrolforroboticarms. Inrecentyears,neuralnetwork-basedcontrolmethodshavegainedpopularityinthefieldofroboticsduetotheirabilitytoapproximatecomplexnonlinearfunctions.Amongvariousneuralnetworkstructures,RadialBasisFunction(RBF)networkshavebeenwidelyusedformodelingdynamicsystems.However,traditionalRBFneuralnetworkshavelimitationsintermsofaccuracyandgeneralizationability.Toaddresstheselimitations,anEvolutionaryComputation(EC)-basedapproachcanbeintegratedwithRBFnetworkstoenhancetheirperformance. 2.EC-RBFNeuralNetworkModel TheEC-RBFneuralnetworkisacombinationofRBFnetworksandevolutionarycomputationtechniques.TheRBFnetworkisuseda