预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数字图像相关中的散斑区域自动提取研究 数字图像相关中的散斑区域自动提取研究 摘要: 随着数码相机和智能手机的普及,数字图像在我们日常生活中扮演着越来越重要的角色。然而,在数字图像相关的应用中,散斑现象是一种较为普遍的问题。散斑是由于光波经过不均匀介质(如液晶显示器、玻璃等)时发生折射、反射、散射而引起的光的干涉引起的。散斑使得图像的品质下降,难以满足高精度数字图像处理所需的精度要求。因此,对于数字图像散斑区域的自动提取研究具有重要的意义。本文对数字图像散斑区域自动提取的研究现状进行了探讨,并提出了一种基于模板卷积的散斑区域自动提取方法。 关键词:数字图像;散斑区域;自动提取;模板卷积 Abstract: Withthepopularityofdigitalcamerasandsmartphones,digitalimagesareplayinganincreasinglyimportantroleinourdailylives.However,indigitalimage-relatedapplications,specklephenomenonisacommonproblem.Speckleiscausedbytheinterferenceoflightwavesduetorefraction,reflection,andscatteringwhenpassingthroughnon-uniformmediasuchasliquidcrystaldisplaysandglass.Specklecausesthequalityoftheimagetodecrease,makingitdifficulttomeettheaccuracyrequirementsrequiredforhigh-precisiondigitalimageprocessing.Therefore,itisofgreatsignificancetostudytheautomaticextractionofspeckleareasindigitalimages.Thispaperdiscussesthecurrentresearchstatusofautomaticextractionofspeckleareasindigitalimages,andproposesaspeckleareaautomaticextractionmethodbasedontemplateconvolution. Keywords:digitalimage;specklearea;automaticextraction;templateconvolution 1.Introduction Inrecentyears,digitalimageprocessingtechnologyhasmadegreatprogress,anddigitalimageshavebeenwidelyusedinvariousfieldssuchasmedicaldiagnosis,remotesensing,andindustrialinspection.However,intheacquisitionofdigitalimages,duetotheinfluenceoftheimagingsystemortheenvironment,theoccurrenceofspecklephenomenahasbecomeacommonproblem.Specklehasthecharacteristicsofhighcontrast,lowsignal-to-noiseratio,andrandomdistribution,whichnotonlyaffectsthevisualeffectoftheimagebutalsomakesitdifficulttoprocesstheimageautomatically. Therefore,theautomaticextractionofspeckleareasindigitalimageshasbecomeanimportantresearchtopicinthefieldofimageprocessing.Inthispaper,wediscussedthecurrentresearchstatusofautomaticextractionofspeckleareasindigitalimages,andproposedaspeckleareaautomaticextractionmethodbasedontemplateconvolution. 2.Researchstatus 2.1Thetraditionalmethod Usually,thet