预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心 高二数学集合的概念与运算苏教版 【本讲教育信息】 一.教学内容: 集合的概念与运算 二.教学目的: 1、了解集合的含义,体会元素与集合的“属于”关系。 2、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。 3、理解集合之间包含与相等的含义,能识别给定集合的子集(不要求证明集合的相等关系、包含关系)。 4、了解全集与空集的含义。 5、理解两个集合的并集与交集的含义;会求两个简单集合的并集与交集。 6、理解给定集合的一个子集的补集的含义;会求给定子集的补集。 7、会用Venn图表示集合的关系及运算。 三教学重、难点: 教学重点:集合的概念与运算 教学难点:集合的语言的抽象性 [知识梳理] (一)基本运算(填表) 运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)S A 记作,即CSA=韦恩图示性质AA=A AΦ=Φ AB=BA ABA ABBAA=A AΦ=A AB=BA ABA ABB(CuA)(CuB) =Cu(AB) (CuA)(CuB) =Cu(AB) A(CuA)=U A(CuA)=Φ.容斥原理有限集A的元素个数记作card(A)。对于两个有限集A,B,有card(A∪B)=card(A)+card(B)-card(A∩B). (二)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合。记作N, (2)正整数集:非负整数集内排除0的集。记作N*或N+ (3)整数集:全体整数的集合。记作Z, (4)有理数集:全体有理数的集合。记作Q, (5)实数集:全体实数的集合。记作R, 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N*或N+。Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。 (2)互异性:集合中的元素没有重复。 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向不可改变,不能把a∈A颠倒过来写。 (三)集合的表示方法 1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合 例如,由方程的所有解组成的集合,可以表示为{-1,1} 注:(1)有些集合亦可如下表示: 从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…} (2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素 2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法 格式:{x∈A|P(x)} 含义:在集合A中满足条件P(x)的x的集合 例如,不等式的解集可以表示为:或 所有直角三角形的集合可以表示为: 注:(1)在不致混淆的情况下,可以省去竖线及左边部分 如:{直角三角形};{大于104的实数} (2)错误表示法:{实数集};{全体实数} 3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法 4、何时用列举法?何时用描述法? ⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合 ⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法 如:集合;集合{1000以内的质数} 例:集合与集合是同一个集合吗? 答:不是因为集合是抛物线上所有的点构成的集合,集合=是函数的所有函数值构成的数集 (四)