预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于曲波变换和压缩感知的煤岩惰质组分类 Title:Coal-RockInertiniteGroupClassificationBasedonCurveletTransformandCompressedSensing Abstract: Coal-rockclassificationplaysacrucialroleincoalminingandexplorationasithelpsindeterminingthequalityandusabilityofcoaldeposits.Inthispaper,weproposeanovelapproachtoclassifycoal-rockinertinitegroupsusingtheCurveletTransformandCompressedSensingtechniques.Theproposedmethodaimstoimprovetheaccuracyandefficiencyofexistingclassificationmethods. 1.Introduction: Coal-rockclassificationisachallengingtaskduetothecomplexcompositionalandstructuralcharacteristicsofcoaldeposits.Traditionalclassificationmethodsrelyonmanualidentificationandvisualinterpretation,leadingtosubjectiveandtime-consuminganalysis.Therefore,thereisastrongneedforautomatedandobjectiveclassificationtechniques. 2.Background: TheCurveletTransformisapowerfultoolforanalyzingthestructureandtextureofdigitalimages.Itisknownforitsabilitytocapturelocaldirectionalinformation,makingitsuitableforcoal-rockanalysis.CompressedSensingisasignalprocessingtechniquethatenablesthereconstructionofsparsesignalswithareducednumberofmeasurements,whichcansignificantlyspeeduptheclassificationprocess. 3.Methodology: Theproposedmethodconsistsofthefollowingsteps: 3.1DataAcquisition: High-resolutioncoal-rockimagesarecollectedusingadvancedimagingtechniquessuchasscanningelectronmicroscopy(SEM)oropticalmicroscopy.Theseimagesserveastheinputfortheclassificationprocess. 3.2CurveletTransform: TheacquiredimagesaredecomposedusingtheCurveletTransform.Thistransformcapturesthemulti-scaledirectionalinformationinthecoal-rockimages,enablingamorerobustfeatureextractioncomparedtotraditionalmethods. 3.3FeatureExtraction: FromtheCurveletcoefficients,statisticalfeaturessuchasmean,standarddeviation,skewness,andkurtosisareextractedtorepresentthelocalstructureandtexturepropertiesofthecoal-rocksamples.Thesefeaturesserveastheinputfortheclassificationalgorithm. 3.4CompressedSensing: Toreducethedimensionalityofthefeaturespaceandfurtherenhancetheclassifica