基于残差三维卷积神经网络的高光谱遥感图像分类.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于残差三维卷积神经网络的高光谱遥感图像分类.docx
基于残差三维卷积神经网络的高光谱遥感图像分类摘要高光谱遥感图像分类是遥感图像处理领域的重要问题,利用高光谱遥感图像进行分类,可以对不同地物进行识别和分割。本文提出了一种基于残差三维卷积神经网络的高光谱遥感图像分类方法,该方法可以通过提取高光谱图像的特征,进行分类和识别。本文通过实验结果证明了该方法的有效性和优越性。关键词:高光谱遥感图像分类;残差三维卷积神经网络;特征提取;分类绪论随着遥感技术的飞速发展,遥感图像成为了研究地球空间信息的重要数据源。高光谱遥感图像是一种能够获取地面物体反射光谱信息的重要手段
基于三维空洞卷积残差神经网络的高光谱影像分类方法.docx
基于三维空洞卷积残差神经网络的高光谱影像分类方法摘要:高光谱影像分类是遥感图像处理的重要任务之一,对于实现精确的地物识别和分类具有重要意义。本文提出了基于三维空洞卷积残差神经网络的高光谱影像分类方法。该方法通过引入三维空洞卷积和残差连接机制,实现了对高光谱影像的特征提取和分类。实验结果表明,该方法不仅能够提高分类精度,还具有较好的鲁棒性。1.引言高光谱影像是利用遥感技术获取的一种多光谱数据,它能够提供关于地物的丰富光谱信息。因此,高光谱影像分类是一项重要的任务,可以帮助我们实现对地物的准确识别和分类。目前
基于三维卷积神经网络的高光谱遥感图像分类技术研究的任务书.docx
基于三维卷积神经网络的高光谱遥感图像分类技术研究的任务书任务书一、任务背景遥感技术是现代生产、农业、环境保护等领域中不可或缺的基础设施。传统的遥感技术主要利用单一的光谱信息来进行对地观测和数据处理,但这种方法变异性较大,难以达到准确的分类效果。高光谱遥感图像则是指将一幅图像划分成多个波段,对不同波段的数据进行分析,通过多种光谱线分析技术处理后,可以获得物体的更为详细的属性和特征信息。基于高光谱的遥感图像分类技术已经成为了遥感图像处理领域中的主流研究方向,其对物体性质、构成、空间位置等信息的描述更为准确。因
一种基于混合卷积神经网络的高光谱遥感图像分类方法.pdf
本发明公开了一种混合卷积神经网络的高光谱遥感图像分类方法。本发明包括:1、将3维和2维卷积神经网络进行串联,加入并行卷积块和非局部注意力模块,构建自定义的神经网络;2、将有标注的高光谱图像划分为若干有重叠的小数据立方体作为模型的输入;3、将样本按一定的比例划分为训练集和测试集;4、分批次将训练集样本输入神经网络进行训练,直到模型稳定;5、使用训练好的模型对高光谱图像进行分类,通过预先划分好的测试集评估模型的分类效果,并最终得到分类结果图。本发明充分利用高光谱遥感图像丰富的光谱信息和空间信息。同时在进行注意
基于卷积神经网络的高光谱图像分类研究.pptx
汇报人:CONTENTS添加章节标题研究背景高光谱图像的特点卷积神经网络在图像处理中的应用研究意义和目的卷积神经网络原理卷积神经网络的基本结构卷积层和池化层的原理激活函数的作用训练和优化方法高光谱图像预处理高光谱图像的获取和特点数据预处理流程特征提取和降维方法样本划分和标注基于卷积神经网络的高光谱图像分类模型构建模型构建流程模型参数设置和调整正则化方法和技巧模型评估指标和方法实验结果和分析实验数据集和实验环境介绍实验过程和结果展示结果分析和对比模型优缺点和改进方向结论与展望研究成果总结对未来研究的建议和展