预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种改进的残差网络宫颈癌细胞图像识别方法 Title:AnImprovedResidualNetworkApproachforCervicalCancerCellImageRecognition Abstract: Cervicalcancerisoneoftheleadingcausesofcancer-relateddeathsinwomenworldwide.Earlyandaccuratedetectionofcervicalcancercellsisessentialforitssuccessfultreatment.Inrecentyears,deeplearningalgorithms,suchasresidualnetworks,haveshownremarkablesuccessinimagerecognitiontasks.Thispaperproposesanimprovedresidualnetworkapproachfortheaccuraterecognitionofcervicalcancercellsfrommicroscopicimages.Theproposedapproachaimstoenhancetheperformanceofexistingmethodsbyleveragingthepowerofresidualnetworksandincorporatingnovelarchitecturalimprovements.Experimentalresultsdemonstratethattheproposedmethodachievessuperiorperformanceintermsofaccuracy,sensitivity,andspecificitycomparedtoexistingstate-of-the-artmethods. 1.Introduction: Cervicalcancerisaglobalhealthconcern,particularlyindevelopingcountrieswithlimitedaccesstoscreeningandhealthcarefacilities.Earlydetectionofcervicalcancercellsplaysacrucialroleinimprovingtheprognosisandreducingmortalityrates.Imagerecognitiontechniqueshaveshownpromisingresultsinthefieldofcancerdetection,anddeeplearningmethodshaveemergedasthestate-of-the-artapproach.Thispaperpresentsanimprovedresidualnetworkapproachfortheaccuraterecognitionofcervicalcancercells. 2.RelatedWork: 2.1CervicalCancerCellImageRecognition: Thetraditionalapproachesforcervicalcancercellimagerecognitioninvolvedhand-craftedfeatureextractionfollowedbyclassification.However,thesemethodsheavilyrelyonmanualfeatureengineeringandmaynotcapturealltherelevantinformationpresentintheimages.Withtheadventofdeeplearning,convolutionalneuralnetworks(CNNs)haveshownexcellentperformanceinimagerecognitiontasks.Amongthem,residualnetworkshavegainedpopularityduetotheirabilitytotraindeepnetworkseffectivelybyusingskipconnections. 2.2ResidualNetworks: Residualnetworks(ResNets)areatypeofCNNsthatintroducedskipconnectionstofacilitatethetrainingofdeepnetworks.Theyallowthenetworktolearntheresidualmappinginsteadofdirectly