预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

无人驾驶汽车局部路径规划算法研究 Title:ResearchonPartialPathPlanningAlgorithmforAutonomousVehicles Abstract: Theadventofautonomousvehicleshasrevolutionizedtheautomotiveindustry,offeringimmensepotentialforenhancedmobility,increasedsafety,andimprovedefficiency.Oneofthekeycomponentsofautonomousdrivingistheabilitytoplanoptimalandsafepathsinreal-time.Thispaperaimstoinvestigateandanalyzevariouspartialpathplanningalgorithmsforautonomousvehicles,providinganoverviewoftheiradvantages,limitations,andfutureresearchdirections. Keywords:autonomousvehicles,pathplanning,partialpath,algorithm Introduction: Autonomousvehiclesrequirerobustandefficientpathplanningalgorithmstonavigateandmaneuverincomplexanddynamicenvironments.Partialpathplanningalgorithmsfocusonlocalplanning,consideringaspecificsegmentoftheoveralltrajectorytoensuresmooth,safe,andreal-timedecision-making.Thispaperwilldelveintotheresearchandanalysisofseveralpartialpathplanningalgorithms,highlightingtheirstrengthsandweaknesses. 1.TraditionalPartialPathPlanningAlgorithms: 1.1.PotentialField-BasedMethods: Potentialfield-basedalgorithmsapplyavirtualforcefieldconcepttoplantrajectoriesaroundobstacles.Theyconsiderattractiveforcestowardgoaldestinationswhilerepulsiveforcesaregeneratedaroundobstacles.Whilesimpletoimplementandinterpret,theyoftensufferfromlocalminimaandmightnotgenerategloballyoptimalpaths. 1.2.VisibilityGraph-BasedMethods: Visibilitygraph-basedalgorithmscreateagraphconnectingallvisiblepointsintheenvironment.Theseapproachesrelyongraphsearchalgorithmstodeterminetheoptimalpath.Whileeffectiveinstaticenvironments,theyarenotsuitablefordynamicscenariosastheyrequirefrequentgraphupdates. 2.Sample-BasedPartialPathPlanningAlgorithms: 2.1.Rapidly-ExploringRandomTrees(RRT): RRTisapopularsample-basedalgorithmthatgeneratesatreebyrapidlyexploringtheconfigurationspace.Iteffectivelyhandlescomplex,high-dimensionalspacesandcanadapttodynamicenvironments.However,itmightgeneratesuboptimalpathsduetorandomness. 2.2.ProbabilisticRoadmaps(PRM): PRMconstructsa