预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共108页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

多水平统计模型简介ABriefIntroductiontoMultilevelStatisticalModels概述 层次结构数据的普遍性 经典方法及其局限性 基本多水平模型 多水平模型的应用 概述HarveyGoldstein,UK,UniversityofLondon,InstituteofEducation 《MultilevelModelsinEducationalandSocialResearch》1987AnthonyBryk,UniversityofChicago StephenRaudenbush,MichiganStateUniversity,DepartmentofEducationalPsychology 《HierarchicalLinearModels:ApplicationsandDataAnalysisMethods》1992NicholasLongford,PrincetonUniversity,EducationTestingService 《RandomCoefficientModels》1993 多水平主成分分析 多水平因子分析 多水平判别分析 多水平logistic回归 多水平Cox模型 多水平Poisson回归 多水平时间序列分析 多元多水平模型 多水平结构方程模型大家应该也有点累了,稍作休息“水平”(level):指数据层次结构中的某一层次。例如,子女为低水平即水平1,家庭为高水平即水平2。 “单位”(unit):指数据层次结构中某水平上的一个实体。例如,每个子女是一个水平1单位,每个家庭是一个水平2单位。 临床试验和动物实验的重复测量 多中心临床试验研究 纵向观测如儿童生长发育研究 流行病学现场调查如整群抽样调查 遗传学家系调查资料 meta分析资料层次结构数据为一种非独立数据,即某观察值在观察单位间或同一观察单位的各次观察间不独立或不完全独立,其大小常用组内相关(intra-classcorrelation,ICC)度量。 例如,来自同一家庭的子女,其生理和心理特征较从一般总体中随机抽取的个体趋向于更为相似,即子女特征在家庭中具有相似性或聚集性(clustering),数据是非独立的(nonindependent)。非独立数据不满足经典方法的独立性条件,采用经典方法可能失去参数估计的有效性并导致不合理的推断结论。 但非独立数据的组内相关结构各异,理论上,不同的结构应采用相应的统计方法。如纵向观测数据常用广义估计方程(GEE),但有两个局限性:一是对误差方差的分解仅局限于2水平的情形,二是没有考虑解释变量对误差方差的影响。当应变量的协差阵为分块对角阵时,一般采用多水平模型。经典方法框架下的分析策略 经典的线性模型只对某一层数据的问题进行分析,而不能将涉及两层或多层数据的问题进行综合分析。 但有时某个现象既受到水平1变量的影响,又受到水平2变量的影响,还受到两个水平变量的交互影响(cross-levelinteraction)。 个体的某事件既受到其自身特征的影响,也受到其生活环境的影响,即既有个体效应,也有环境或背景效应(contexteffect)。 例如,个体发生某种牙病的危险可能与个体的遗传倾向、个体所属的社会阶层(如饮食文化和口腔卫生习惯)、环境因素(如饮水中氟浓度)等有关。 分解(disaggregation) 聚合(aggregation)分解:不满足模型独立性假定,回归系数及其标准误的估计无效,且未能有效区分个体效应与背景效应。另一种分析策略是用哑变量拟合高水平单位的固定效应。 聚合:损失大量水平1单位的信息,更严重的是可能导致“生态学谬误”(ecologicalfallacy)。多水平分析的概念为人们提供了这样一个框架,即可将个体的结局联系到个体特征以及个体所在环境或背景特征进行分析,从而实现研究的事物与其所在背景的统一。 经典模型的基本假定是单一水平和单一的随机误差项,并假定随机误差项独立、服从方差为常量的正态分布,代表不能用模型解释的残留的随机成份。当数据存在层次结构时,随机误差项则不满足独立常方差的假定。模型的误差项不仅包含了模型不能解释的应变量的残差成份,也包含了高水平单位自身对应变量的效应成份。多水平模型将单一的随机误差项分解到与数据层次结构相应的各水平上,具有多个随机误差项并估计相应的残差方差及协方差。构建与数据层次结构相适应的复杂误差结构,这是多水平模型区别于经典模型的根本特征。多水平模型由固定与随机两部分构成,与一般的混合效应模型的不同之处在于,其随机部分可以包含解释变量,故又称为随机系数模型(randomcoefficientmodel),其组内相关也可为解释变量的函数。换言之,多水平模型可对不同水平上的误差方差进行深入和