预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于混沌PSONN-PID神经网络的热连轧活套系统自适应解耦控制(英文) Title:AdaptiveDecouplingControlofHotRollingActiveSleeveSystemBasedonChaoticPSONN-PIDNeuralNetwork Abstract: Inthefieldofhotrolling,theactivesleevesystemplaysavitalroleinthecontrolandstabilityoftheprocess.Inthispaper,weproposeanadaptivedecouplingcontrolstrategybasedonachaoticParticleSwarmOptimizedNeuralNetwork(PSONN)-ProportionalIntegralDerivative(PID)controllertoeffectivelyaddressthesystem'snonlinearity,uncertainty,andinter-couplingissues.Theproposedmethodisimplementedandtestedonahotrollingactivesleevesystem,andtheresultsdemonstratethattheproposedapproachprovidessuperiorcontrolperformancecomparedtotraditionalcontrolmethods. 1.Introduction Thehotrollingprocessiswidelyusedintheproductionofsteelandothermetalproducts.Theactivesleevesystem,whichconsistsofmultipleactuatorsandsensors,isresponsibleforadjustingthepositionandpressureoftheworkrollstomaintainstablerollingconditions.However,duetotheinherentnonlinearity,uncertainty,andstrongcouplingeffectsofthesystem,traditionalcontrolmethodsoftenfailtoachievesatisfactoryperformance.Therefore,thereisaneedforamoreadvancedcontrolstrategy. 2.LiteratureReview Thissectionprovidesanoverviewoftheexistingcontrolmethodsusedinhotrollingprocesses.Itdiscussesthelimitationsoftraditionalcontrolmethodsandthebenefitsofusingneuralnetworksforcontrolapplications.TheliteraturereviewalsocoverstheapplicationofParticleSwarmOptimization(PSO)algorithmsinoptimizingneuralnetworkparameters. 3.SystemModeling Thehotrollingactivesleevesystemismodeledusingmathematicalequationstocaptureitsdynamicsandinter-couplingeffects.Themodelingprocessincludestheidentificationofsystemparametersandthederivationofstate-spaceequations. 4.ChaoticPSONN-PIDControllerDesign Theproposedcontrolstrategycombinestheadvantagesofchaoticsystems,PSONN,andPIDcontrollers.ThechaoticsystemisincorporatedtoenhancetheexplorationandexploitationcapabilitiesofthePSOalgorithm,leadingtoimprovedparameteroptimization.ThePSONNisutilizedasthecontrolmechanism,withtheabil