预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于DE蝙蝠算法优化粒子滤波的目标跟踪 Title:OptimizationofParticleFilteringforObjectTrackingUsingDifferentialEvolutionBatAlgorithm Abstract: Objecttrackingisafundamentaltaskincomputervisionandhasnumerousapplicationsinfieldssuchassurveillance,robotics,andautonomousvehicles.Particlefilteringisapopulartrackingmethodthatestimatesthestateofanobjectbyusingasetofparticles.However,theparticlefilter'sperformanceheavilyreliesontheaccuracyandefficiencyofitsoptimizationalgorithm.ThispaperproposestheintegrationoftheDifferentialEvolutionBatAlgorithm(DEBA)withparticlefilteringtoenhancethetrackingaccuracyandefficiency. Introduction: Objecttrackingisessentialformonitoringandanalyzingmovingobjectsinvariousapplications.Particlefilteringisawidely-usedtechniqueforobjecttrackingduetoitsabilitytohandlenon-linearandnon-Gaussiandistributions.However,traditionalparticlefilteringalgorithmsoftenfacechallengesintrackingefficientlyandaccurately,especiallyincomplexscenarios.Toaddresstheselimitations,thispaperintroducestheintegrationoftheDEBAwithparticlefilteringtoimprovethetrackingperformance. LiteratureReview: Theparticlefilteralgorithmhasbeenwidelyexploredandappliedinobjecttracking.TraditionalalgorithmslikeSequentialImportanceResampling(SIR)sufferfromthedegeneracyproblem,wheremostoftheparticlesbecomeirrelevantafterresampling.Toovercomethisissue,strategiessuchasresample-moves,Rao-Blackwellization,andauxiliaryparticlefiltershavebeenproposed.However,thesemethodsoftenrequireadditionalcomplexstepsandcomputations,reducingtheoveralltrackingperformance.Inrecentyears,metaheuristicalgorithmshavegainedpopularityduetotheirglobalsearchcapabilitiesandabilitytooptimizecomplexproblems.TheBatAlgorithm(BA)andtheDifferentialEvolution(DE)algorithmhaveshownpromisingresultsinvariousoptimizationproblems.Combiningthestrengthsofthesetwoalgorithmscanpotentiallyenhancetheperformanceofparticlefilteringforobjecttracking. Methodology: TheproposedapproachintegratestheDEBAwithparticlefilteringforimprovedobjecttracking.First,aninitialsetofparti