预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于CNN的粒子滤波目标跟踪算法研究 Abstract: Particlefilterisapopularalgorithminobjecttrackingduetoitsabilitytohandlenonlinearandnon-Gaussiansystems.However,thetraditionalparticlefiltersuffersfromhighcomputationalcomplexityandlowtrackingaccuracy.Inthispaper,weproposeanovelparticlefilteralgorithmbasedonconvolutionalneuralnetwork(CNN)forobjecttracking.ByincorporatingCNNintotheparticlefilterframework,ouralgorithmachievesimprovedtrackingperformancewhilereducingcomputationalcomplexity.Experimentalresultsdemonstratetheeffectivenessandefficiencyofourproposedalgorithm. 1.Introduction Objecttrackingisafundamentalproblemincomputervisionandhaswideapplicationsinvariousfieldssuchassurveillance,robotics,andaugmentedreality.Particlefilterisaneffectivealgorithmforobjecttracking,asitcanhandlenonlinearity,non-Gaussiannoise,andocclusioninthetrackingprocess.However,thetraditionalparticlefiltersuffersfromlimitationssuchashighcomputationalcomplexityandlowtrackingaccuracy.Inrecentyears,deeplearningalgorithms,especiallyconvolutionalneuralnetwork(CNN),haveachievedremarkableresultsinvariouscomputervisiontasks. 2.Background 2.1ParticleFilter Particlefilter,alsoknownasMonteCarlofilter,isasequentialMonteCarlomethodforestimatingtheposteriordistributionofthestatevariablesinasystem.Itinvolvesrepresentingtheposteriordistributionwithasetofsamples,knownasparticles,whicharepropagatedandupdatedthroughaseriesofobservations.Theparticleswithhigherweightsaremorelikelytorepresentthetruestateofthesystem. 2.2ConvolutionalNeuralNetwork Convolutionalneuralnetwork(CNN)isatypeofdeeplearningalgorithmthathasshownexcellentperformanceinimageclassification,objectdetection,andsemanticsegmentation.CNNhasahierarchicalstructurewithmultipleconvolutionallayersthatlearnlocalfeaturesfromtheinputdata.ThishierarchicalfeatureextractionabilitymakesCNNaneffectivetoolforimage-basedtasks. 3.ProposedMethod OurproposedparticlefilteralgorithmbasedonCNNaimstoimprovethetrackingperformancewhilereducingcomputationalcomplexity.Themainideaistoutilizethepowe