预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

双约束非负矩阵分解的复合故障信号分离方法 Title:CompositeFaultSignalSeparationusingBi-constrainedNon-negativeMatrixFactorization Abstract: Inrecentyears,theanalysisandseparationoffaultsignalsfromnoisymeasurementshavegainedsignificantattentioninvariousfields,suchasfaultdiagnosis,signalprocessing,andmachinelearning.Non-negativeMatrixFactorization(NMF)hasbeenwidelyemployedasaneffectivesignalseparationtechnique,particularlyinthecontextoffaultdetectionandidentification.Thispaperproposesanovelcompositefaultsignalseparationmethodusingbi-constrainedNMF,whichcombinesthebenefitsofbothnon-negativityandbi-constrainttoachieveaccurateandrobustfaultsignalseparation. Introduction: Faultsignals,alsoknownasanomalyordisturbancesignals,canoftenbeoverwhelmedbynoiseinpracticalscenarios,makingtheiranalysisandseparationchallenging.Theaccurateseparationoffaultsignalsfromnoisymeasurementsiscrucialforimprovingthereliabilityandefficiencyoffaultdetectionanddiagnosissystems.Non-negativeMatrixFactorization(NMF)hasemergedasapowerfultoolforseparatingmixedsignalsbydecomposingagivenmatrixintotwonon-negativefactors,representingthefaultandnoisecomponents. Methods: 1.Bi-constrainedNMFmodel: Theproposedcompositefaultsignalseparationmethodisbasedonabi-constrainedNMFmodel.TheNMFmodelaimstofactorizetheobservedmixedsignalmatrixMintotwomatrices:HrepresentingthefaultcomponentandWrepresentingthenoisecomponent.Inbi-constrainedNMF,additionalconstraintsareintroducedtoenforcethefactormatricestobenon-negativeandrepresentativeofthefaultandnoisesignatures. 2.Objectivefunction: Theobjectivefunctionofthebi-constrainedNMFmodelconsistsoftwoterms.Thefirsttermmeasuresthereconstructionerror,aimingtominimizethedistancebetweentheobservedmixedsignalmatrixanditsapproximationthroughthefaultandnoisecomponents.Thesecondtermincorporatesthebi-constraints,penalizingnegativeelementsinthefactormatricestoenforcenon-negativity. 3.Optimizationalgorithm: Tosolvethebi-constrainedNMFproblem,anefficientoptimizationalgorithmisdesigned.Thealgorithmiterativelyupdates