预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种基于图像处理的轮胎X光图像缺陷检测方法 Title:AnImageProcessing-basedApproachforTireX-rayImageDefectDetection Abstract: Tiremanufacturingqualitycontrolisofparamountimportancetoensuresafetyandperformance.Thispaperproposesaninnovativeimageprocessing-basedapproachfordetectingdefectsintireX-rayimages.Themethodinvolvesaseriesofpre-processingsteps,featureextraction,anddefectclassificationusingmachinelearningtechniques.Theproposedapproachshowspromisingresultsinaccuratelyidentifyingvarioustypesoftiredefectswithhighprecision. Introduction: Thetireindustryplaysacriticalroleinensuringvehiclesafetyandperformance.Defectivetirescanleadtoaccidentsandinjuries,makingtirequalitycontrolessential.Traditionalmethodsfortiredefectdetectionoftenrelyonmanualinspection,whichistime-consuming,subjective,andpronetohumanerrors.Inrecentyears,variousautomatedmethods,especiallythosebasedonimageprocessingtechniques,havegainedpopularityduetotheirefficiencyandaccuracy. Methodology: Theproposedmethodconsistsofseveralsteps:imageacquisition,pre-processing,featureextraction,anddefectclassification. ImageAcquisition: TireX-rayimagesareacquiredusingspecializedX-raymachines,allowinginternaltirestructurestobevisible.Theacquiredimagesprovideabasisforsubsequentanalysisanddefectdetection. Pre-processing: Toenhancethequalityandclarityoftheimages,pre-processingtechniquesareemployed.Thesetechniquesincludenoisereduction,contrastenhancement,andimageenhancementalgorithmstooptimizetheimagesfordefectdetection. FeatureExtraction: Extractingeffectiveanddiscriminativefeaturesfromthepre-processedimagesiscrucialforaccuratedefectdetection.Varioustechniquescanbeemployed,suchastextureanalysis,edgedetection,andshape-basedanalysis.Thefeaturesextractedfromtheimagesprovidecrucialinformationaboutthetire'sstructuralpropertiesandpotentialdefects. DefectClassification: Oncetherelevantfeaturesareextracted,amachinelearningalgorithmisappliedtoclassifythedefects.Supervisedlearningalgorithms,suchassupportvectormachines(SVM),randomforests,orartificialneuralne