预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高考资源网(),您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。 用心爱心专心 高考资源网(),您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。 水平方向上的碰撞及弹簧模型 [模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1.在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于() A.B.C.D. 解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。 二、光滑水平面上有阻挡板参与的碰撞问题 例2.在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。 图1 (1)求弹簧长度刚被锁定后A球的速度。 (2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。 (2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有 以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得 当弹簧伸到最长时,其势能最大,设此势能为EP”,由能量守恒,有解以上各式得。 说明:对弹簧模型来说“系统具有共同速度之时,恰为系统弹性势能最多”。 三、粗糙水平面上有阻挡板参与的碰撞问题 例3.图2中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态。另一质量与B相同滑块A,从导轨上的P点以某一初速度向B滑行,当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好返回出发点P并停止,滑块A和B与导轨的滑动摩擦因数都为,运动过程中弹簧最大形变量为l2,重力加速度为g,求A从P出发时的初速度v0。 图2 解析:令A、B质量皆为m,A刚接触B时速度为v1(碰前) 由功能关系,有 A、B碰撞过程中动量守恒,令碰后A、B共同运动的速度为v2 有 碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B的共同速度为v3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有 此后A、B开始分离,A单独向右滑到P点停下,由功能关系有 由以上各式,解得 四、结论开放性问题 例4.用轻弹簧相连的质量均为2kg的A、B两物块都以的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg的物体C静止在前方,如图3所示,B与C碰撞后二者粘在一起运动。求:在以后的运动中, 图3 (1)当弹簧的弹性势能最大时物体A的速度多大? (2)弹性势能的最大值是多大? (3)A的速度有可能向左吗?为什么? 解析:(1)当A、B、C三者的速度相等时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,有 解得: (2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为,则 设物块A速度为vA时弹簧的弹性势能最大为EP,根据能量守恒 (3)由系统动量守恒得 设A的速度方向向左,,则 则作用后A、B、C动能之和 实际上系统的机械能 根据能量守恒定律,是不可能的。故A不可能向左运动。 [模型要点] 系统动量守恒,如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。能量守恒,动能与势能相互转化。 弹簧两端均有物体:弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相等,弹簧具有最大的弹性势能。 当弹簧恢复原长时,相互关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时