预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心115号编辑 2008高考数学总复习直线与圆的位置关系 ●知识梳理 直线和圆 1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系. ①Δ>0,直线和圆相交. ②Δ=0,直线和圆相切. ③Δ<0,直线和圆相离. 方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较. ①d<R,直线和圆相交. ②d=R,直线和圆相切. ③d>R,直线和圆相离. 2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况. 3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题. ●点击双基 1.(2005年北京海淀区期末练习题)设m>0,则直线(x+y)+1+m=0与圆x2+y2=m的位置关系为 A.相切B.相交 C.相切或相离D.相交或相切 解析:圆心到直线的距离为d=,圆半径为. ∵d-r=-=(m-2+1)=(-1)2≥0, ∴直线与圆的位置关系是相切或相离. 答案:C 2.圆x2+y2-4x+4y+6=0截直线x-y-5=0所得的弦长等于 A.B.C.1D.5 解析:圆心到直线的距离为,半径为,弦长为2=. 答案:A 3.(2004年全国卷Ⅲ,4)圆x2+y2-4x=0在点P(1,)处的切线方程为 A.x+y-2=0B.x+y-4=0 C.x-y+4=0D.x-y+2=0 解法一: x2+y2-4x=0 y=kx-k+ x2-4x+(kx-k+)2=0. 该二次方程应有两相等实根,即Δ=0,解得k=. ∴y-=(x-1),即x-y+2=0. 解法二:∵点(1,)在圆x2+y2-4x=0上, ∴点P为切点,从而圆心与P的连线应与切线垂直. 又∵圆心为(2,0),∴·k=-1. 解得k=,∴切线方程为x-y+2=0. 答案:D 4.(2004年上海,理8)圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4)、B(0,-2),则圆C的方程为____________. 解析:∵圆C与y轴交于A(0,-4),B(0,-2), ∴由垂径定理得圆心在y=-3这条直线上. 又已知圆心在直线2x-y-7=0上, 解得x=2, ∴联立 y=-3, 2x-y-7=0. ∴圆心为(2,-3), 半径r=|AC|==. ∴所求圆C的方程为(x-2)2+(y+3)2=5. 答案:(x-2)2+(y+3)2=5 5.若直线y=x+k与曲线x=恰有一个公共点,则k的取值范围是___________. 解析:利用数形结合. 答案:-1<k≤1或k=- ●典例剖析 【例1】已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径. 剖析:由于OP⊥OQ,所以kOP·kOQ=-1,问题可解. 解:将x=3-2y代入方程x2+y2+x-6y+m=0,得5y2-20y+12+m=0. 设P(x1,y1)、Q(x2,y2),则y1、y2满足条件 y1+y2=4,y1y2=. ∵OP⊥OQ,∴x1x2+y1y2=0. 而x1=3-2y1,x2=3-2y2, ∴x1x2=9-6(y1+y2)+4y1y2. ∴m=3,此时Δ>0,圆心坐标为(-,3),半径r=. 评述:在解答中,我们采用了对直线与圆的交点“设而不求”的解法技巧,但必须注意这样的交点是否存在,这可由判别式大于零帮助考虑. 【例2】求经过两圆(x+3)2+y2=13和x2+(y+3)2=37的交点,且圆心在直线x-y-4=0上的圆的方程. 剖析:根据已知,可通过解方程组 得圆上两点, (x+3)2+y2=13, x2+(y+3)2=37 由圆心在直线x-y-4=0上,三个独立条件,用待定系数法求出圆的方程; 也可根据已知,设所求圆的方程为(x+3)2+y2-13+λ[x2+(y+3)2-37]=0,再由圆心在直线x-y-4=0上,定出参数λ,得圆方程. 解:因为所求的圆经过两圆(x+3)2+y2=13和x2+(y+3)2=37的交点, 所以设所求圆的方程为(x+3)2+y2-13+λ[x2+(y+3)2-37]=0. 展开、配方、整理,得(x+)2+(y+)2=+. 圆心为(-,-),代入方程x-y-4=0,得λ=-7. 故所求圆的方程为(x+)2+(y+)2=. 评述:圆C1:x2+y2+D1x+E1y+F1=0,圆C2:x2+y2+D2x+E2y+F2=0,若圆C1、C2相交,那么过两圆公共点的圆系方程为(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0(λ∈R且λ≠-1).它表示除圆C2以外的所有经过两圆C1、C2公