预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于多波段全极化SAR影像的湿地分类 Title:WetlandClassificationBasedonMulti-BandFullyPolarimetricSARImages Abstract: Wetlandconservationandmanagementplayacrucialroleinunderstandingtheearth'secologicalbalanceandmaintainingitsoverallhealth.Satellite-basedsensors,specificallySyntheticApertureRadar(SAR),haveemergedasvaluabletoolsforwetlandmonitoringduetotheirall-weatherandday-nightimagingcapabilities.Thispaperfocusesontheclassificationofwetlandsusingmulti-bandfullypolarimetricSARimages.Variousclassificationtechniques,includingsupervisedandunsupervisedmethods,areexploredtoextractusefulinformationandenhancewetlandmappingaccuracy.Theresultsdemonstratethepotentialofmulti-bandfullypolarimetricSARimagesinwetlandclassificationandprovideinsightsintoeffectivewetlandmanagementstrategies. 1.Introduction 1.1Background 1.2Objective 1.3Significance 2.WetlandClassificationTechniques 2.1SupervisedClassificationTechniques 2.1.1MaximumLikelihoodClassification 2.1.2SupportVectorMachines 2.1.3RandomForest 2.2UnsupervisedClassificationTechniques 2.2.1K-meansClustering 2.2.2HierarchicalClustering 2.2.3Self-OrganizingMaps 3.DataAcquisitionandPreprocessing 3.1SARDataAcquisition 3.1.1SelectionofSARSensors 3.1.2ImageAcquisitionParameters 3.1.3ImageCalibration 3.2PreprocessingTechniques 3.2.1RadiometricCalibration 3.2.2SpeckleFiltering 3.2.3TerrainCorrection 4.FeatureExtraction 4.1PolarimetricFeatures 4.1.1CoherenceMatrix 4.1.2ConjugateMatrix 4.1.3PolarimetricDecompositions 4.2TextureFeatures 4.2.1Gray-LevelCo-occurrenceMatrix(GLCM) 4.2.2GaborFilters 4.3StatisticalFeatures 4.3.1Mean 4.3.2StandardDeviation 4.3.3SkewnessandKurtosis 5.WetlandClassificationExperiment 5.1TrainingDataCollection 5.2FeatureSelection 5.3ClassificationAlgorithmImplementation 5.3.1ModelTraining 5.3.2ModelTesting 5.4AccuracyAssessment 5.4.1OverallAccuracy 5.4.2KappaCoefficient 6.ResultsandDiscussion 6.1ComparativeAnalysisofClassificationTechniques 6.2EvaluationofFeatureContribution 6.3LimitationsandChallenges 7.Conclusion 7.1SummaryofFinding