预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于LBP特征的人脸识别算法改进研究 Title:ImprovingtheLBPFeatures-basedFaceRecognitionAlgorithm Abstract: Facerecognitionhasgainedsignificantattentioninrecentyearsasareliablebiometricauthenticationtechnology.TheLocalBinaryPattern(LBP)algorithmhasemergedasapopularandeffectiveapproachforextractingfeaturesfromfacialimages.ThispaperinvestigatesvariousenhancementstotheLBPalgorithmtoimproveitsperformanceinfacerecognitiontasks.TheproposedimprovementsincludeLBPvariantselection,multi-scaleanalysis,andfeaturefusiontechniques.ExperimentalresultsdemonstratethattheseenhancementssignificantlyenhancetherecognitionaccuracyandrobustnessoftheLBP-basedalgorithm. 1.Introduction 1.1Background Intoday'sdigitalera,facerecognitionhasbecomeacrucialtechnologyforvariousapplications,includingsecurity,surveillance,andidentityverification.LocalBinaryPattern(LBP)isatexturedescriptorwidelyusedinimageanalysisandcomputervisiontasksduetoitssimplicityandeffectiveness.TheLBPalgorithmcapturesspatialrelationshipsbetweenpixelsandencodeslocaltexturepatterns. 1.2Motivation AlthoughtheLBPalgorithmhasshownpromisingresultsinfacerecognitiontasks,itstillfaceschallengesinhandlingvariationsinlighting,pose,andfacialexpressions.ThispaperaimstoaddressthesechallengesbyproposingimprovementstotheLBPalgorithm.Theobjectiveistoenhancetheaccuracyandrobustnessoffacerecognitionsystemsinreal-worldscenarios. 2.RelatedWork ThissectionprovidesanoverviewoftheexistingresearchonLBP-basedfacerecognitionalgorithms.Itdiscussesthestrengthsandlimitationsofthesemethods,highlightingtheneedforfurtherimprovements. 3.ProposedEnhancements 3.1LBPVariantSelection DifferentvariantsoftheLBPoperatorhavebeenproposedintheliterature.ThissectioninvestigatesvariousLBPvariants,suchasuniformLBPandrotation-invariantLBP,todeterminethemostsuitablevariantforfacerecognitiontasks.Experimentalevaluationsareconductedtocomparetheperformanceofthesevariantsandselectthemosteffectiveone. 3.2Multi-scaleAnalysis Facerecognitionsystemsshouldbecapableofhandlingvariationsinfacialscales.Thi