预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于高光谱数据的黄河流域水体提取方法研究 摘要 本研究旨在探究基于高光谱数据的黄河流域水体提取方法,并对其有效性进行评估。在高光谱遥感影像的采集和处理过程中,我们采用了最小二乘法(OLS)和最小二乘支持向量机(LS-SVM)两种方法进行反演。结果显示,LS-SVM方法能够更好地提取出水体信息,准确率达到了91%以上。此外,我们还研究了影响水体提取准确性的因素,包括光谱响应曲线、水深、降雨量等。综上所述,本研究为黄河流域水体资源的有效管理提供了一种可靠的技术手段。 关键词:高光谱数据;水体提取;最小二乘法;最小二乘支持向量机;黄河流域 Abstract TheaimofthisstudyistoexplorethemethodofwaterbodyextractionintheYellowRiverBasinbasedonhyperspectraldataandevaluateitseffectiveness.Intheprocessofacquiringandprocessinghyperspectralremotesensingimages,weusedtwomethods,ordinaryleastsquares(OLS)andleastsquaressupportvectormachine(LS-SVM)toinvert.TheresultsshowedthattheLS-SVMmethodcanbetterextractwaterbodyinformation,withanaccuracyrateofmorethan91%.Inaddition,wealsostudiedthefactorsthataffecttheaccuracyofwaterbodyextraction,includingspectralresponsecurves,waterdepth,andrainfall.Insummary,thisstudyprovidesareliabletechnicalmeansfortheeffectivemanagementofwaterresourcesintheYellowRiverBasin. Keywords:hyperspectraldata;waterbodyextraction;ordinaryleastsquares;leastsquaressupportvectormachine;YellowRiverbasin Introduction Waterresourceisavaluablenaturalresourcethatplaysanimportantroleinhumansurvivalanddevelopment.Inrecentyears,withtherapidgrowthofpopulationandeconomy,thedemandforwaterresourceshasincreasedsignificantly.Themanagementofwaterresourceshasbecomeanimportantissueforsustainabledevelopment.Therefore,itisveryimportanttoaccuratelyandquicklyidentifyandmonitorthewaterbodyresources. Hyperspectralremotesensingtechnologycanobtainhigh-resolutionandhigh-precisionspectralinformationoftheearth'ssurfaceandhasbeenwidelyusedinthedetectionandanalysisofwaterresources.However,waterbodyextractionbasedonhyperspectraldataisstillachallengingtaskduetovariousfactorssuchasthecomplexityofwatersurfaceandtheinfluenceofatmosphericscattering. ResearchMethods Inthisstudy,wecollectedhyperspectralremotesensingdataoftheYellowRiverBasinasexperimentaldataandusedthetwomethodsofordinaryleastsquares(OLS)andleastsquaressupportvectormachine(LS-SVM)toinvert. OLSisatraditionallinearre