预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于机器视觉的路面裂缝病害多目标识别技术 Abstract: Roadsurfacedistressidentificationisanimportanttaskforroadmaintenanceandmonitoring.Oneofthemostcommontypesofdistressisthecrackingoftheroadsurface.Inrecentyears,thedevelopmentofmachinevisiontechnologyhasenabledaccurateandefficientidentificationofmultipletypesofcrackdefectsonroadsurfaces.Inthispaper,amulti-targetrecognitiontechnologyforroadsurfacecrackdefectsbasedonmachinevisionisproposed.Theproposedtechnologyuseshigh-resolutionimagesandartificialintelligencealgorithmstoidentifydifferenttypesofcrackdefectsonroadsurfaces.Thispaperprovidesanoverviewoftheproposedtechnology,includingimagepreprocessing,featureextraction,andclassificationalgorithms.Experimentsdemonstratethattheproposedtechnologycanaccuratelyandefficientlyidentifydifferenttypesofcrackdefectsontheroadsurface. Introduction: Thedeteriorationofroadsurfacesisamajorconcernfortransportationinfrastructuremanagers.Roadsurfacedistressescancauseaccidents,reducetheservicelifeofpavements,andincreasethemaintenancecosts.Currently,manualinspectionmethodsareusedtodetectroadsurfacedistresses,whicharetime-consuming,labor-intensive,andhavelowaccuracy.Therefore,automatedidentificationofroadsurfacedistressesusingmachinevisiontechnologyhasbecomeapromisingapproachforroadmonitoringandmaintenance. Roadsurfacecrackingisoneofthemostcommontypesofdistress.Cracksintheroadsurfacecanbecausedbyvariousfactors,suchastrafficloads,climate,andmaterialproperties.Identifyingthetypesofcrackscanhelproadmanagersmakeinformeddecisionsonhowtobestaddresstheissues.However,themanualinspectionofcrackagetypicallytakesalongtimeandhaslowaccuracy.Therefore,amachinevisionsystemthatcanaccuratelyidentifythetypeofcrackdefectcanprovidesignificantbenefitsforroadmaintenanceandmonitoring. Theproposedmulti-targetrecognitiontechnologyforroadsurfacecrackdefectsisbasedonmachinevision.Thesystemiscomposedofahigh-resolutioncamera,animageprocessingmodule,afeatureextractionmodule,andaclassificationmodule,asshowninFigure1.Thecameraisusedtocaptureimag