预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于自适应扩展卡尔曼滤波的消能减震结构及附加阻尼力识别 Abstract AdaptiveExtendedKalmanFilter(AEKF)isawidelyusedmethodfordynamicsystemestimationandcontrol.Inthispaper,anovelAEKF-basedapproachforenergydissipationandvibrationreductionofstructuralsystemsisproposed.Themethodinvolvesreal-timeestimationofthestateofthestructuralsystem,predictionofitsfuturebehaviorandoptimalcontrolactions.TheAEKFalgorithmisemployedtoupdatetheestimationofthesystem'sstatebasedonnoisymeasurementsobtainedfromsensorsinstalledonthestructure.Toimprovetheaccuracyandrobustnessoftheestimation,anovelfilteringtechniqueisproposedwhichadaptstheestimationcovariancematrixbasedonthesystem'sbehavior.Additionally,anadditivedampingforceisintroducedtofurtherenhancetheenergydissipationandvibrationreductionofthestructure.AnewidentificationtechniqueisproposedtoestimatethedampingforcebyusingtheKalmanfilter.Simulationstudiesareconductedtodemonstratetheeffectivenessoftheproposedmethodinreducingthestructuralvibrationanddissipatingenergyduringseismicevents. Keywords:AdaptiveExtendedKalmanFilter,energydissipation,vibrationreduction,structuralsystem,dampingforceidentification,seismicevents. Introduction Dynamicresponseandseismicperformanceofstructuresarecriticalinensuringthesafetyofbuildingoccupantsandpreventingdamagetoinfrastructure.Traditionalpassivecontrolmethodssuchasbaseisolation,tunedmassdampers,anddampersareusedtoreducethedynamicresponseofstructures.However,thesedevicesarelimitedintheireffectivenessastheycannotadapttochangingdynamicloadsandvariationsinstructuralproperties.Toaddressthisissue,activecontrolmethodshavebeendevelopedwhichusecontrolalgorithmstomanipulatethestructuralresponsetodynamicloadsinreal-time.Thisapproachallowsformoreeffectiveandadaptivecontrolofstructuralresponsesduringearthquakesandothernaturaldisasters. OneofthemostwidelyusedactivecontrolmethodsistheAdaptiveExtendedKalmanFilter(AEKF).TheAEKFisapowerfultoolforestimatingthestateofdynamicsystemsbasedonnoisysensormeasurements.Itupdatesitsestimatesinreal-timeusingarecursivealg