预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种基于人工蜂群算法的多目标路径决策方法 摘要: 在多目标路径决策中,寻找最短路径和最优路径是一个非常重要的问题,这个问题已经被广泛研究。本文提出了一种基于人工蜂群算法的多目标路径决策方法。该方法实现了由多个目标函数组成的多目标构建路径的优化问题。最短路径和最短时间路径是最常见的目标函数,此外我们还可以将其他目标函数加入到算法中。实验结果表明,与其他算法相比,该算法能够产生更好的性能表现。 关键词:人工蜂群算法,多目标路径决策,优化问题,目标函数 Abstract: Inmulti-objectivepathdecision,findingtheshortestpathandoptimalpathisaveryimportantproblemthathasbeenwidelyresearched.Inthispaper,amulti-objectivepathdecisionmethodbasedonartificialbeecolonyalgorithmisproposed.Themethodrealizestheoptimizationproblemofconstructingapathcomposedofmultipleobjectivefunctions.Theshortestpathandtheshortesttimepatharethemostcommonobjectivefunctions.Inaddition,wecanaddotherobjectivefunctionstothealgorithm.Theexperimentalresultsshowthatcomparedwithotheralgorithms,thealgorithmcanproducebetterperformance. Keywords:ArtificialBeeColonyAlgorithm,multi-objectivepathdecision,optimizationproblem,objectivefunction Introduction: Pathdecisionisacriticalandchallengingtaskinmanyfieldsandareas,includingtransportation,supplychainmanagement,andnetworkoptimization.Findingtheshortestpathandoptimalpathisthemostcommonobjectiveofpathdecision.Multiplecriteriamaycomeintoconsiderationwhilemakingthepathdecision,suchasshortestpath,fastestpath,andthepathwiththeleastcost. Artificialbeecolony(ABC)algorithmisametaheuristicoptimizationalgorithmthatmimicstheintelligentforagingbehaviorofhoneybees.ABCalgorithmhasbeenwidelyinvestigatedandappliedinavarietyofoptimizationproblems,suchasneuralnetworkoptimization,imageprocessing,anddataclustering.TheadvantagesofABCincluderapidconvergencecapability,simplicity,andlowcomputationrequirements. Inthispaper,weproposeamulti-objectivepathdecisionmethodbasedonABCalgorithmthatcanoptimizethepathdecisionproblemwithmultiplecriteria. Methodology: Theproposedmethodinvolvesseveralsteps: 1.Encodingthepathdecisionproblem Thepathdecisionproblemcanbeencodedasagraph,wherenodesrepresentvariouswaypointsorlocations,andedgesrepresentthepathsorconnectionsbetweenthem.Eachedgehasanassociatedweight,whichcanbethedistance,traveltime