预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

超度量空间中的不动点定理 Introduction Inmathematics,FixedPointTheoremisafundamentalconceptthatdescribesmathematicalpropertiesofcontinuousfunctionsanddifferentialequations.Inparticular,thefixedpointtheoremisusedinvariousfieldsofmathematics,includinggeometry,topology,andanalysis,toderivemathematicalprinciples.Inthisessay,wefocusontheFixedPointTheoreminmetricspaces,particularlyinhyperbolicmetricspaces. FixedPointTheoreminMetricSpaces Ametricspacecanbedescribedasasetofobjectswhoserelativedistancescanbeexpressedmathematically.Thedistancefunctionsatisfiesthefourmetricaxioms:non-negative,symmetric,triangleinequality,andcoincident.Inmetricspaces,afixedpointisapointthatremainsunchangedafterapplyingafunctionortransformation.Thefixedpointtheoreminmetricspacesstatesthattheremustexistafixedpointforanycontinuousfunctionthatmapsanon-empty,compact,andconvexmetricspaceintoitself. HyperbolicMetricSpaces Ahyperbolicmetricspaceisaspecialtypeofmetricspace,wherethedistancebetweenanytwopointsislessthantheEuclideandistance.ThispropertymakeshyperbolicmetricspacesmorenegativelycurvedthantheEuclideanspace.HyperbolicmetricspaceshaveauniquetopologyandgeometrythatdiffersfromEuclideanmetricspacesandhavesignificanceinthestudyofhyperbolicgeometry,dynamicalsystems,andotherareasofmathematics. FixedPointTheoreminHyperbolicMetricSpaces TheFixedPointTheoreminhyperbolicmetricspacesisageneralizationoftheBanachFixedPointTheorem.Itstatesthatacontinuousfunctionmappingaconvexandboundedhyperbolicmetricspaceintoitselfhasatleastonefixedpoint.Thisstatementistrueevenwhenthemetricspaceisincompleteornon-compact,whicharefeaturesnotcoveredbytheBanachFixedPointTheorem. Tounderstandthisstatement,webeginbyprovingthefollowinglemma: Lemma1:SupposeXisaconvexandboundedhyperbolicmetricspace,andf:X→Xisacontinuousmap.Defineg:X→Xsuchthatg(x)=d(f(x),x),wheredisthehyperbolicdistancefunction.Then,g(x)≤g(y)+d(x,y)foranyx,yinX. Proof:Supposex,yarearbitrarypointsinX.Wehave: g(y)+d(x,y)=d(f(y),y)+d(x,y)bythedefinitionofg. SinceXisconvex,thereexist