预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

某些可解群的外自同构建的阶 Introduction: Grouptheoryisabranchofmathematicsthatdealswiththestudyofgroups,whicharemathematicalobjectsthatformthebasisofmodernalgebra.Agroupisasetofelementsthatsatisfycertainproperties,suchasclosure,associativity,identity,andinverse.Groupsareusedinmanyareasofmathematics,physics,chemistry,computerscience,andengineering,tonameafew.Oneimportantconceptingrouptheoryisthenotionofanautomorphism,whichisabijectivemapfromagrouptoitselfthatpreservesthegroupstructure.Anautomorphismofagroupisanisomorphismfromthegrouptoitself.Inthispaper,wewillstudytheorderoftheexternalautomorphismgroupofagivengroup,alsoknownastheouterautomorphismgroup.Morespecifically,wewillfocusonthecasewherethegivengroupisasolublegroup,andshowthattheorderofitsouterautomorphismgroupisboundedbyafunctionofitsorder. Solublegroups: Asolublegroupisagroupthatcanbewrittenasasequenceofsubgroups,eachofwhichisnormalinthepreviousone,withfactorgroupsthatareallabeliangroups.Inotherwords,asolublegroupisagroupthatcanbedissolvedintosmaller,abelianpieces.Forexample,thegroupofintegersisasolublegroup,asitcanbewrittenasasequenceofsubgroups: {0}<{±1}<{±2}<{±3}<... whereeachsubgroupisnormalinthepreviousone,andthefactorgroupsareallisomorphictothecyclicgroupZ.Therearemanyinterestingexamplesofsolublegroups,suchasthedihedralgroups,thesymmetricgroups,thealternatinggroups,andtheSylowp-subgroupsoffinitegroups,tonameafew. Outerautomorphisms: AnouterautomorphismofagroupGisanautomorphismofGthatisnotaninnerautomorphism,i.e.,itcannotbewrittenasconjugationbyanelementofG.ThegroupofouterautomorphismsofGisdenotedAut(G)/Inn(G),whereAut(G)isthegroupofallautomorphismsofG,andInn(G)isthenormalsubgroupofAut(G)consistingofinnerautomorphismsofG.IfGisabelian,thenInn(G)isthetrivialgroup,andhenceAut(G)/Inn(G)isisomorphictoAut(G).However,ifGisnon-abelian,thenAut(G)/Inn(G)isanon-trivialgroupthatmeasurestheamountofsymmetryofGthatisnotcapturedbytheconjugationactionofGonitself. Theorems: LetGbeafinitesolublegroup.Thentheorderofitsouterautomorphismg