预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于RBF神经网络的混凝土泵车臂架运动学逆解为题目,写不少于1200的论文 1.Introduction Nowadays,theconstructionindustryisrapidlydevelopingworldwide,andtheconcretepumptruckisconsideredasignificantdeviceintheconstructionsite.Itiscrucialequipmentthathelpstoplaceready-mixconcreteatdifferentelevationswithhighefficiencyandaccuracy.Theconcretepumptruckconsistsofmultiplemechanisms,wherethearmframeplaysafundamentalroleinlifting,moving,andplacingconcreteatvarioussites. Theinversekinematicsoftheconcretepumptruckarmframeisessentialtodeterminetheanglesandpositionsofitsdifferentsegments.Theaccuratemeasurementofthesevariablesisnecessarytoensureproperplacementoftheconcretewithoutcausinganydamage.Therefore,inthispaper,weproposeanRBFneuralnetwork-basedapproachtoobtaintheinversekinematicsoftheconcretepumptruckarmframe. 2.Background Theinversekinematicsofaroboticarmisdefinedastheprocessofdeterminingthejointvariablesthatachieveadesiredendeffectorposition.Inthecaseoftheconcretepumptruckarmframe,thejointvariablescorrespondtotheanglesandpositionsofthedifferentsegmentsofthearmframe,whiletheendeffectoristheconcreteplacementnozzle. Atraditionalapproachtosolvetheinversekinematicsproblemisthroughanalyticalmethodssuchasthegeometricmethodoralgebraicmethod.However,thecomplexityoftheconcretepumptruckarmframemakesthistaskchallengingandlaborious.Moreover,theanalyticalapproachrequiressignificantmathematicskillsandistime-consuming. Incontrast,theneuralnetwork-basedapproachoffersamoreefficientandaccuratesolution.TheRBFneuralnetworkisapopularchoiceinsolvinginversekinematicsproblemsduetoitsexcellentapproximationcapabilitiesandflexibility.TheRBFnetworkcanmodelnon-linearrelationshipsbetweentheinputandoutputvariables,makingitsuitableforcomplexproblemssuchastheinversekinematicsoftheconcretepumptruckarmframe. 3.Methodology TheproposedRBFneuralnetwork-basedapproachinvolvestrainingthenetworktolearntherelationshipbetweenthejointvariablesandtheendeffectorposition.Theinputofthenetworkisthejointvariables,whiletheoutputisthecorrespondingendeffectorpo