预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于YOLO的电梯轿厢中狗识别算法为题目,写不少于1200的论文 I.Introduction Inrecentyears,objectdetectionhasbecomeoneofthecoretasksincomputervisionresearch.OneofthemostpopularobjectdetectionalgorithmsisYOLO(YouOnlyLookOnce),whichisanend-to-endlearningmodelthatcanquicklyandaccuratelydetectobjectsinimagesandvideos.Withthedevelopmentofdeeplearningtechnology,YOLOhasbeenwidelyusedinvariousfields,suchasautonomousdriving,surveillance,androbotics. Inthispaper,weproposeaYOLO-basedalgorithmforidentifyingdogsinelevatorcabins.Elevatorsareessentialfacilitiesinbuildings,anddogsarecommonlyfoundinresidentialbuildings,offices,andotherpublicspaces.However,dogsinelevatorscanposearisktootherpassengers,particularlythosewhohaveallergiesorfearofdogs.Therefore,itiscrucialtoidentifydogsintheelevatorcabinquicklyandaccuratelytoensurethesafetyofpassengers. II.RelatedWork Objectdetectionhasbeenwidelystudiedinrecentyears,andseveralalgorithmshavebeenproposed.Traditionalmethods,suchasslidingwindows,requiremultiplepassesofimagescanning,whichisinefficientandtime-consuming.Recently,deeplearning-baseddetectionalgorithmshaveachievedgreatsuccessinobjectdetection.YOLOisoneofthemostrepresentativealgorithms,whichhasbeenwidelyusedinmanyfields. However,applyingYOLOtodogdetectioninelevatorcabinsisstillanewresearchdirection.Somestudieshavebeenconductedtodetectdogsinimagesandvideos,butthesemethodsmaynotbesuitableforelevatorcabins'uniqueenvironment.Therefore,weproposeaYOLO-basedalgorithmspecificallydesignedfordogdetectioninelevatorcabins. III.Methodology Ourdogdetectionalgorithmconsistsofthreemainstages:datacollection,networktraining,anddogdetection.First,wecollectedadatasetofimagescontainingdogsinelevatorcabins.Thisdatasetincludesvariousdogbreeds,differentelevatorcabins,anddifferentlightingconditions. Then,wetrainedaYOLOv3objectdetectionmodelonthecollecteddatasettorecognizedogsinelevatorcabins.TheYOLOv3modelisaneuralnetworkthatusesasingleconvolutionalneuralnetwork(CNN)topredictboundingboxesandclassprobabilitiesfortheobjectsinanimage.Compa