预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高三数学课本必学知识点 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法亲密相关,要擅长把它们有机地联系起来,相互转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较简单的不等式化归为较简洁的或根本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。2。整式不等式(主要是一次、二次不等式)的解法是解不等式的根底,利用不等式的性质及函数的单调性,将分式不等式、肯定值不等式等化归为整式不等式(组)是解不等式的根本思想,分类、换元、数形结合是解不等式的常用(方法)。方程的根、函数的性质和图象都与不等式的解亲密相关,要擅长把它们有机地联系起来,相互转化和相互变用。3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较简单的不等式化归为较简洁的或根本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。4。证明不等式的方法敏捷多样,但比拟法、综合法、分析法仍是证明不等式的最根本方法。要依据题设、题断的构造特点、内在联系,选择适当的证明方法,要熟识各种证法中的推理思维,并把握相应的步骤,技巧和语言特点。比拟法的一般步骤是:作差(商)→变形→推断符号(值)。高三数学课本必学学问点21、三类角的求法:①找出或作出有关的角。②证明其符合定义,并指出所求作的角。③计算大小(解直角三角形,或用余弦定理)。2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。正棱锥的计算集中在四个直角三角形中:3、怎样推断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比拟。直线与圆相交时,留意利用圆的“垂径定理”。4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。不看懊悔!清华名师揭秘学好高中数学的方法培育兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培育兴趣呢?(1)观赏数学的美感比方几何图形中的对称、变换前后的不变量、概念的严谨、规律的严密……通过对旋转变换及其不变量的争论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的肯定值为定值(小于两个定点之间的距离)的点的集合。(2)留意到数学在实际生活中的应用。例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的学问就可以理解.学好数学,是现代公民的(根本素养)之一啊.(3)采纳敏捷的教学手段,与时俱进。利用多种技术手段,声、光、电多管齐下,教师可以借此把一些学问讲得更详细形象,学生也更简单承受,理解更深。(4)适当看一些科普类的书籍和(文章)。比方:学圆锥曲线的时候,可以看看一些建筑物的形状,它们被平面所截出的曲线往往就是各种圆锥曲线,许多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。高三数学课本必学学问点3一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、假如函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。2、若f(x)为增(减)函数,则-f(x)为减(增)函数。3、若f(x)与g(x)的单调性一样,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。4、奇函数在对称区间上的单调性一样,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比拟大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、假如一个奇函数在x=0处有定义,则f(0)=0,假如一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶