预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心 课题:10.4二项式定理(一) 教学目的: 1掌握二项式定理及二项式展开式的通项公式. 2.会利用二项展开式及通项公式解决有关问题. 教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等. 通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成. 二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点. 二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法. 在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习 教学过程: 一、复习引入: ⑴; ⑵ ⑶的各项都是次式, 即展开式应有下面形式的各项:,,,,, 展开式各项的系数:上面个括号中,每个都不取的情况有种,即种,的系数是;恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,有都取的情况有种,的系数是, ∴. 二、讲解新课: 二项式定理: ⑴的展开式的各项都是次式,即展开式应有下面形式的各项: ,,…,,…,, ⑵展开式各项的系数: 每个都不取的情况有种,即种,的系数是; 恰有个取的情况有种,的系数是,……, 恰有个取的情况有种,的系数是,……, 有都取的情况有种,的系数是, ∴, 这个公式所表示的定理叫二项式定理,右边的多项式叫的二项展开式,⑶它有项,各项的系数叫二项式系数, ⑷叫二项展开式的通项,用表示,即通项. ⑸二项式定理中,设,则 三、讲解范例: 例1.展开.解一:. 解二: . 例2.展开.解: . 例3.求的展开式中的倒数第项 解:的展开式中共项,它的倒数第项是第项, . 例4.求(1),(2)的展开式中的第项. 解:(1), (2). 点评:,的展开后结果相同,但展开式中的第项不相同 例5.(1)求的展开式常数项; (2)求的展开式的中间两项 解:∵, ∴(1)当时展开式是常数项,即常数项为; (2)的展开式共项,它的中间两项分别是第项、第项, , 四、课堂练习: 1.求的展开式的第3项. 2.求的展开式的第3项. 3.写出的展开式的第r+1项. 4.求的展开式的第4项的二项式系数,并求第4项的系数. 5.用二项式定理展开: (1);(2). 6.化简:(1);(2) 7.展开式中的第项为,求. 8.求展开式的中间项 答案:1. 2. 3. 4.展开式的第4项的二项式系数,第4项的系数 5.(1); (2). 6.(1); (2) 7.展开式中的第项为 8.展开式的中间项为 五、小结:二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点 六、课后作业: 七、板书设计(略) 八、课后记: