预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于copula理论与EVT-SV模型的金融市场VaR测度研究 摘要: 本文基于copula理论与EVT-SV模型,针对金融市场VaR测度问题进行深入研究。首先,通过对基于正态分布假设的VaR计算方法的不足进行分析,引入copula理论解决变量之间的非线性相关性。同时,将EVT-SV模型应用于VaR计算中,有效地提高了VaR的准确性和稳健性。最后,本文以实际数据为例,进行VaR计算,并比较不同模型的VaR估计结果,验证了本研究所提出的方法的可行性和有效性。 关键词:copula理论,EVT-SV模型,VaR,金融市场 Introduction ValueatRisk(VaR)iswidelyusedinfinancialmarketsformeasuringthepotentiallossofaportfoliooraspecificasset.ThetraditionalVaRcalculationmethodassumesthatthereturnsofeachassetintheportfolioarenormallydistributedandindependentofeachother,whichisnotalwaysthecaseinrealfinancialmarkets.Copulatheoryisintroducedtosolvethisproblembydescribingthedependencestructureofrandomvariablesbetweendifferentassets.Ontheotherhand,extremevaluetheory,withitsfocusonthetailevents,isusedtomodeltheextremefluctuationoffinancialmarkets,whichmakesitpossibletomakeamoreaccurateVaRmeasurement. Inthispaper,weproposeaVaRmeasurementmethodbasedoncopulatheoryandtheEVT-SVmodel,whichcanbeusedtobettercapturethetailofthedistributionofassetreturns.Thismethodcaneffectivelydealwiththenon-lineardependencerelationshipbetweenassetsandimprovetheaccuracyandrobustnessofVaRmeasurement. Backgroundandliteraturereview InthetraditionalVaRcalculationmethod,thereturnsofeachassetareassumedtobenormallydistributedandindependent,whichisnotalwaysthecaseintherealworld.Inordertodescribethedependencestructureofrandomvariablesbetweendifferentassets,copulatheoryisintroduced.Copulatheoryassumesthatthemarginaldistributionsofdifferentassetsareindependent,andtheirdependencestructureisdeterminedbyacopulafunction.Thecopulafunctioncanreflectthenon-linearcorrelationbetweenassetsbetterthanlinearcorrelationmethods. TheEVT-SVmodel,whichisbasedonextremevaluetheoryandstochasticvolatilitymodels,isusedtomodelthetailofthedistributionofassetreturns.Itcancapturetheextremefluctuationsinthefinancialmarketandmakemoreaccuratepredictionsoftailevents.TheEVT-SVmodelismoreaccuratethanothertailmodels,suchasGARCH,basedonitsassumptionsaboutthepropertiesofthetailsofthedistribution. Methodology The