预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

含有定量和定性因子计算机试验的Kriging模型 Introduction Krigingisamethodofinterpolationusedtopredictthevalueofanunknownvariableataspecificlocation.Itisbasedontheassumptionthatvaluesoftheunknownvariablearespatiallycorrelated.ThemethodwasfirstdevelopedbyD.G.Krigein1951andhassincebeenwidelyusedinavarietyoffieldsincludinggeostatistics,engineering,andenvironmentalscience. Inthispaper,wewilldiscusstheKrigingmodelthatincludesbothquantitativeandqualitativefactorsinacomputerexperiment. KrigingModel TheKrigingmodelisbasedontheassumptionthatthespatiallycorrelatedvaluesofthevariableofinterestcanbemodeledasaprocesswithameanandaspatiallycorrelatedresidual.Themodelcanbewrittenas: Z(s)=μ+ε(s) WhereZ(s)isthevalueofthevariableatlocations,μisthemeanofthevariableovertheentiredomain,andε(s)isthespatiallycorrelatedresidual. InaKrigingmodelthatincludesbothquantitativeandqualitativefactors,thespatiallycorrelatedresidualisassumedtobeafunctionofboththequantitativeandqualitativefactors.TheKrigingmodelcanthenbewrittenas: Z(s)=μ+ε(s,X,G) WhereXisavectorofthequantitativefactorsandGisavectorofthequalitativefactors.ThespatiallycorrelatedresidualisassumedtobeafunctionofbothXandG. TheKrigingmodelthatincludesbothquantitativeandqualitativefactorscanbeestimatedusingavarietyofmethodsincludingmaximumlikelihoodestimation,cross-validation,andBayesianmethods. MaximumLikelihoodEstimation Maximumlikelihoodestimationisamethodofestimatingtheparametersofastatisticalmodelbasedonthelikelihoodfunction.InthecaseoftheKrigingmodelthatincludesbothquantitativeandqualitativefactors,thelikelihoodfunctionis: L(θ|Y,X,G)=f(Y|X,G,θ) Whereθisthevectorofparameters,Yisthevectorofobservations,Xisthevectorofquantitativefactors,Gisthevectorofqualitativefactors,andf(Y|X,G,θ)isthedensityfunctionfortheobservationsgiventheparametersandthefactors. Themaximumlikelihoodestimateoftheparametersisthevalueofθthatmaximizesthelikelihoodfunction. Cross-Validation Cross-validationisamethodofevaluatingtheperformanceofastatisticalmodel.InthecaseoftheKrigingmodelthat