基于关联规则挖掘Apriori算法的改进的开题报告.docx
骑着****猪猪
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于关联规则挖掘Apriori算法的改进的开题报告.docx
基于关联规则挖掘Apriori算法的改进的开题报告一、选题背景及意义在大数据时代的背景下,数据挖掘为各个领域提供了重要的支持和帮助,在商业领域尤为突出。关联规则挖掘(AssociationRuleMining)是数据挖掘领域的研究热点之一,其主要是在大型数据集中挖掘出频繁项集,并进一步从中发现有意义的关联规则,是一种非常实用的数据挖掘技术。具体来说,关联规则挖掘可以用于销售推荐、交叉销售、商品陈列、市场营销、用户行为预测等方面的应用。而在使用关联规则挖掘进行数据分析时,最常使用的算法之一是Apriori算
基于关联规则挖掘Apriori算法的改进.docx
基于关联规则挖掘Apriori算法的改进基于关联规则挖掘Apriori算法的改进摘要:随着数据量的不断增加和计算能力的提升,关联规则挖掘成为了数据挖掘领域中的重要技术之一。Apriori算法作为关联规则挖掘的一种经典算法,在处理大规模数据时存在着一些问题,例如频繁项集的生成过程中产生了大量的候选项集,导致计算效率较低。为了解决这些问题,研究者们对Apriori算法进行了改进,提出了多种改进算法。本文主要介绍了Apriori算法的原理以及其存在的问题,并详细介绍了两种常用的改进算法:FP-Growth算法和
关联规则挖掘Apriori算法的研究与改进.docx
关联规则挖掘Apriori算法的研究与改进随着互联网的普及和应用场景的增多,数据规模不断增长,数据挖掘技术在信息处理领域中得到了广泛的应用,其中关联规则挖掘是一种比较常见的数据挖掘技术。在关联规则挖掘中,Apriori算法是最常用的频繁项集挖掘算法之一。本论文主要介绍Apriori算法的原理、优缺点,并结合实际应用和现有研究,探讨其改进方法,以提高挖掘效率和准确性。1.Apriori算法原理Apriori算法是一种基于生成式的频繁项集挖掘算法,其基本思想是由小到大地生成频繁项集,将频繁项集作为候选集,逐步
基于关联规则挖掘Apriori算法的改进的任务书.docx
基于关联规则挖掘Apriori算法的改进的任务书一、项目背景Apriori算法是一种基于关联规则挖掘的算法,常用于市场篮子分析、购物推荐和销售预测等领域。该算法利用频繁项集和置信度来发现数据集中的关联规则,从而实现数据挖掘和信息提取的目的。然而,在实际应用中,Apriori算法存在着许多问题。首先,该算法在数据量非常大时会出现计算速度较慢的情况。其次,传统的Apriori算法无法有效地处理高维数据集和稀疏数据集。同时,原始的Apriori算法还存在着产生大量无关规则等问题,无法对数据进行有效的分类和挖掘。
关联规则挖掘中Apriori算法的研究的开题报告.docx
关联规则挖掘中Apriori算法的研究的开题报告一、选题的背景和意义数据挖掘是一种从大规模数据集中提取隐含信息的技术,其应用广泛,如市场调查、金融分析、医学诊断、工业过程控制等。其中,关联规则挖掘是数据挖掘中的一种技术,主要用于发现数据集中的关联性,在实际应用中可用于推荐系统、销售策略、商品陈列等方面。Apriori算法是目前关联规则挖掘中最经典的算法之一,其通过连续地扫描数据集来发现频繁项集,并生成关联规则。因此,对Apriori算法的研究具有重要的理论和实际意义。二、研究目的本研究旨在通过对Aprio