基于特征融合卷积神经网络的SAR图像目标检测方法.pptx
快乐****蜜蜂
亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于特征融合卷积神经网络的SAR图像目标检测方法.pptx
汇报人:目录PARTONEPARTTWO特征融合技术的原理特征融合技术在SAR图像目标检测中的应用特征融合技术的优势与挑战PARTTHREE卷积神经网络的基本结构卷积神经网络在SAR图像目标检测中的应用卷积神经网络的优化策略PARTFOUR方法概述特征提取与融合目标检测算法设计实验结果与分析PARTFIVE方法优势局限性分析未来研究方向PARTSIX在军事侦察领域的应用前景在遥感监测领域的应用前景未来发展趋势与展望THANKYOU
基于卷积神经网络的SAR图像海洋目标分类检测方法.pdf
本发明公开了一种基于卷积神经网络的SAR图像海洋目标分类检测方法,包括以下几个步骤:步骤一:将含有海洋目标的SAR单视复图像转换为进行功率图像转换并量化;步骤二:将量化后的功率图像进行分割,加注样本类别的标签后构建训练集建立数据集;步骤三:对训练集数据集去均值处理;步骤四:建立卷积神经网络模型;步骤五:使用训练集训练卷积神经网络模型;步骤六:将待分类切片输入卷积神经网络模型,得到分类检测结果。本发明具有可靠性强、泛化能力强、计算复杂度低,实用性强、应用范围广等特点。
基于卷积神经网络的SAR图像目标检测综述.docx
基于卷积神经网络的SAR图像目标检测综述摘要:合成孔径雷达(SyntheticApertureRadar,SAR)图像具有穿透云雾、雨雪、夜间、尘埃等逆境的特点,因此在军事、安防、资源勘探等领域得到了广泛的应用。目标检测技术是SAR图像处理的重要技术之一,近年来,基于卷积神经网络(CNN)的SAR图像目标检测方法得到了快速发展,本文将对该方法的研究现状进行综述,主要从SAR图像特点、CNN基础知识、SAR图像目标检测模型设计和性能评估四个方面进行阐述。关键词:SAR图像、卷积神经网络、目标检测、模型设计、
基于掩码网络融合图像特征的SAR舰船目标检测方法.pdf
本发明提出了一种基于掩码网络融合图像特征的SAR舰船目标检测方法,其步骤为:利用舰船目标与背景的亮度梯度差生成自适应的SAR图像舰船语义分割标签;构建掩码特征融合子网络与掩码特征融合目标检测网络;利用构建的损失函数对目标检测网络进行迭代训练;获取测试样本的目标包围框坐标和置信度。本发明通过生成自适应的SAR图像舰船掩码标签使数据集缺少掩码标签时也能将目标检测与分割任务结合起来;构建了一个掩码特征融合子网络,突出舰船目标特征,抑制背景信息,提升了目标检测精度;为网络设计损失函数,解决了图像前景背景不平衡和训
基于深度卷积神经网络的SAR图像目标分类方法.pdf
本发明提出了一种基于深度卷积神经网络的SAR图像目标分类方法,用于提高SAR图像目标分类精度。实现步骤为:获取包含SAR目标图像的训练样本集和测试样本集;去除训练样本集和测试样本集中每幅SAR图像的背景杂波;构建包含变换sigmoid激活函数构成Enhanced‑SE层的深度卷积神经网络模型;对深度卷积神经网络模型进行训练;用训练后的深度卷积神经网络模型对测试样本集进行分类。本发明通过形态学闭运算方法在去除SAR目标图像中背景杂波时融合目标区域的边缘缺口并填补目标区域的内部缺损,有效保留目标区域的形状特征