基于双对抗编码的时变工况下行星齿轮箱智能故障诊断.pptx
快乐****蜜蜂
亲,该文档总共33页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于双对抗编码的时变工况下行星齿轮箱智能故障诊断.pptx
基于双对抗编码的时变工况下行星齿轮箱智能故障诊断目录双对抗编码原理编码原理介绍编码在故障诊断中的应用双对抗编码的优势编码模型建立时变工况下的故障特征提取时变工况介绍故障特征提取方法特征提取的难点与挑战特征提取的实验验证行星齿轮箱故障机理分析行星齿轮箱结构与工作原理常见故障类型及原因故障对系统的影响分析故障案例分析智能故障诊断算法设计诊断算法框架诊断算法流程诊断算法优化策略诊断算法实验验证诊断系统实现与验证系统总体架构数据采集与预处理模块特征提取与处理模块诊断结果输出模块系统性能评估与优化结论与展望研究成果
基于散度指标的变工况风电行星齿轮箱故障诊断方法.pdf
本发明属于旋转机械故障诊断技术领域,尤其涉及一种基于散度指标的变工况风电行星齿轮箱故障诊断方法,特别适用于变工况风电行星齿轮箱的故障诊断领域。本发明操作步骤如下:根据阶比重采样技术,将变工况风电行星齿轮箱传感器所采集的振动信号进行预处理,将非线性、非平稳的时域信号转化为具有平稳性的角域信号;行星齿轮箱不同于传统定轴齿轮箱,针对其结构特点及诊断的难度,将行星齿轮箱的故障分级进行诊断;提取故障特征集合;故障诊断参数;实验验证。本发明可避免振动信号非平稳的特点,有效清晰的识别故障特征阶比;J-散度和KL-散度均
基于内置编码器信号的行星齿轮箱智能故障诊断方法.pdf
基于内置编码器信号的行星齿轮箱智能故障诊断方法,先利用编码器数据采集卡读取行星齿轮箱中输出轴位置的内置编码器信号,得到测试轴的角位置信号,然后采用多项式拟合法获取行星齿轮箱的瞬时角加速度信号,对瞬时角加速度信号进行分段得到训练集、验证集和测试集;再构建深度卷积神经网络模型;然后利用训练集训练深度卷积神经网络模型,通过验证集和批随机梯度下降法调整每层网络的参数,得到最终的卷积神经网络模型;最后将测试数据输入卷积神经网络模型,对故障进行识别和分类;本发明简化了数据采集程序、降低了测试费用,同时信号包含大量的健
基于多传感器信息融合的变工况行星齿轮箱故障诊断方法.pdf
本发明属于旋转机械故障诊断技术领域,尤其涉及一种基于多传感器信息融合的变工况行星齿轮箱故障诊断方法,特别适用于变工况复杂风电行星齿轮箱的故障诊断方法。包括以下步骤:(1)根据行星齿轮箱结构特点及诊断难度,选取合适的振动测点布置位置和传感器类型,制定采集方案;(2)根据阶比重构技术,将振动信号进行预处理,将非线性、非平稳的时域信号转化为具有平稳性的角域信号;将等时间间隔采样的非平稳振动时域信号转化为具有平稳特性的角域振动信号;(3)多传感器信息的融合;(4)将行星齿轮箱的故障按分布故障和局部故障进行划分;(
基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法.pdf
本发明公开一种基于多属性卷积神经网络的变工况行星齿轮箱太阳轮故障诊断方法,属于机械故障诊断技术领域。该方法首先采集行星齿轮箱太阳轮不同故障类型、不同转速、不同负载工况下的行星齿轮箱的振动数据,从振动数据中创建多个样本点并赋予相应的多属性标签,搭建多属性卷积神经网络,训练多属性卷积神经网络,测试时从待诊断的行星齿轮箱的振动数据中创建多个数据样本点,用训练好的多属性卷积神经网络对测试样本点进行诊断,完成对变工况行星齿轮箱太阳轮故障诊断。本发明方法能够自动提取特征,准确率高,泛化性能强,方法简单易懂,且能实现变