用复数证明余弦定理.docx
Ma****57
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
用复数证明余弦定理.docx
用复数证明余弦定理用复数证明余弦定理法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcosA,bsinA),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acosB,asinB).根据向量的运算:=(-acosB,asinB),=-=(bcosA-c,bsinA),(1)由=:得asinB=bsinA,即=.同理可得:=.∴==.(2)由=(b-cosA-c)2+(
用复数证明余弦定理.docx
用复数证明余弦定理用复数证明余弦定理法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcosA,bsinA),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acosB,asinB).根据向量的运算:=(-acosB,asinB),=-=(bcosA-c,bsinA),(1)由=:得asinB=bsinA,即=.同理可得:=.∴==.(2)由=(b-cosA-c)2+(
用复数证明余弦定理.docx
用复数证明余弦定理用复数证明余弦定理用复数证明余弦定理法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcosA,bsinA),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acosB,asinB).根据向量的运算:=(-acosB,asinB),=-=(bcosA-c,bsinA),(1)由=:得asinB=bsinA,即=.同理可得:=.∴==.(2)由=(b-c
用余弦定理证明.docx
用余弦定理证明用余弦定理证明由正弦定理得cSinB=bSinC带入给定的式子得SinC=SinB(1+2CosA)①C+A+B=π②将②带入①得Sin(π-A-B)=SinB+2SinBcosASinAcosB+SinBcosA=SinB+2SinBcosASinAcosB=SinB+SinBcosASin(A-B)=SinB所以A-B=B或∏-(A-B)=B(舍)所以A=2B2在△ABC中,AB=c、BC=a、CA=b则c^2=a^2+b^2-2ab*cosCa^2=b^2+c^2-2bc*cosAb^
用余弦定理证明.pdf
用余弦定理证明用余弦定理证明由正弦定理得cSinB=bSinC带入给定的式子得SinC=SinB(1+2CosA)①C+A+B=π②将②带入①得Sin(π-A-B)=SinB+2SinBcosASinAcosB+SinBcosA=SinB+2SinBcosASinAcosB=SinB+SinBcosASin(A-B)=SinB所以A-B=B或∏-(A-B)=B(舍)所以A=2B2在△ABC中,AB=c、BC=a、CA=b则c^2=a^2+b^2-2ab*cosCa^2=b^2+c^2-2bc*cosAb^