预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

. . 2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=() A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则() A.(x+1)2+y2=1 B.(x﹣1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=1 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则() A.a<b<c B.a<c<b C.c<a<b D.b<c<a 4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是() A.165cm B.175cm C.185cm D.190cm 5.(5分)函数f(x)=在[﹣π,π]的图象大致为() A. B. C. D. 6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是() A. B. C. D. 7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为() A. B. C. D. 8.(5分)如图是求的程序框图,图中空白框中应填入() A.A= B.A=2+ C.A= D.A=1+ 9.(5分)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则() A.an=2n﹣5 B.an=3n﹣10 C.Sn=2n2﹣8n D.Sn=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为() A.+y2=1 B.+=1 C.+=1 D.+=1 11.(5分)关于函数f(x)=sin|x|+|sinx|有下述四个结论: ①f(x)是偶函数 ②f(x)在区间(,π)单调递增 ③f(x)在[﹣π,π]有4个零点 ④f(x)的最大值为2 其中所有正确结论的编号是() A.①②④ B.②④ C.①④ D.①③ 12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为() A.8π B.4π C.2π D.π 二、填空题:本题共4小题,每小题5分,共20分。 13.(5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为. 14.(5分)记Sn为等比数列{an}的前n项和.若a1=,a42=a6,则S5=. 15.(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是. 16.(5分)已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,•=0,则C的离心率为. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c.设(sinB﹣sinC)2=sin2A﹣sinBsinC. (1)求A; (2)若a+b=2c,求sinC. 18.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点. (1)证明:MN∥平面C1DE; (2)求二面角A﹣MA1﹣N的正弦值. 19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P. (1)若|AF|+|BF|=4,求l的方程; (2)若=3,求|AB|. 20.(12分)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明: (1)f′(x)在区间(﹣1,)存在唯一极大值点;