预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

河南省周口市2017-2018学年高二上学期期末 数学试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求. 1.“x<1”是“lnx<0”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.已知向量=(2,4,5),=(3,x,y)分别是直线l1、l2的方向向量,若l1∥l2,则() A.x=6,y=15 B.x=3,y= C.x=3,y=15 D.x=6,y= 3.已知命题p:“∃x∈R,ex﹣x﹣1≤0”,则命题¬p() A.∀x∈R,ex﹣x﹣1>0 B.∀x∉R,ex﹣x﹣1>0 C.∀x∈R,ex﹣x﹣1≥0 D.∃x∈R,ex﹣x﹣1>0 4.关于x的不等式ax﹣b>0的解集为(﹣∞,1),则不等式>0的解集为() A.(﹣1,2) B.(﹣∞,1)∪(1,2) C.(1,2) D.(﹣∞,﹣1)∪(﹣1,2) 5.若△ABC的三个内角A、B、C满足6sinA=4sinB=3sinC,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 6.一个动点在圆x2+y2=1上移动时,它与定点(3,0)连线中点的轨迹方程是() A.(x+3)2+y2=4 B.(X﹣3)2+y2=1 C.(X+)2+y2= D.(2x﹣3)2+4y2=1 7.两个等差数列{an}和{bn},其前n项和分别为Sn,Tn,且,则等于() A. B. C. D. 8.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成角的余弦值是() A. B. C. D.0 9.在△ABC中,已知a=17,b=24,A=45°,则此三角形() A.无解 B.有两解 C.有一解 D.解的个数不确定 10.已知Sn是等比数列{an}的前n项和,,设Tn=a1•a2•a3•…•an,则使得Tn取最小值时,n的值为() A.3 B.4 C.5 D.6 11.已知椭圆C:=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为() A. B. C. D. 12.定义在R上的函数f(x)对任意x1、x2(x1≠x2)都有<0,且函数y=f(x﹣1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2﹣2s)≤﹣f(2t﹣t2),则当1≤s≤4时,的取值范围是() A.[﹣3,﹣) B.[﹣3,﹣] C.[﹣5,﹣) D.[﹣5,﹣] 二、填空题:本大题共4小题,每小题5分,共20分. 13.若平面α的一个法向量为=(4,1,1),直线l的一个方向向量为=(﹣2,﹣3,3),则l与α所成角的正弦值为. 14.在等比数列{an}中,若a3,a15是方程x2﹣6x+8=0的根,则=. 15.如图所示,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A测得M点的仰角∠MAN=60°,C点的仰角∠CAB=30°,以及∠MAC=105°,从C测得∠MCA=45°,已知山高BC=150米,则所求山高MN为. 16.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=90°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(10分)已知命题P:函数f(x)为(0,+∞)上单调减函数,实数m满足不等式f(m+1)<f(3﹣2m).命题Q:当x∈[0,],函数m=sin2x﹣2sinx+1+a.若命题P是命题Q的充分不必要条件,求实数a的取值范围. 18.(12分)已知△ABC的内角A、B、C所对的边分别为a、b、c,且a=2,cosB=. (Ⅰ)若b=4,求sinA的值; (Ⅱ)若△ABC的面积S=4,求b、c的值. 19.(12分)已知等差数列{an}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{bn}的前n项的和为Sn,且. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn. 20.(12分)已知函数f(x)=,x∈[1,+∞), (1)当a=时,求函数f(x)的最小值; (2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围. 21.(12分)如图所示,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在棱BC上移动. (Ⅰ