预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共32页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

抗原表位的确立与选择(一)报告内容 抗原表位--定义抗原分子以其B细胞表位与抗体分子的抗原结合部位发生互补性结合 A.抗原--抗体复合物的立体构象; B.采用电脑技术将抗原和抗体分子分开,可见抗原和抗体分子的相互作用仅发生在抗原分子的B细胞表位和抗体分子的抗原结合部位之间,两者呈现结构互补。 C.抗体的互补决定区与抗原表位结合示意图 一般情况下,一个多肽表位含5~6个氨基酸残基;一个多糖表位含5~7个单糖;一个核酸半抗原的表位含6~8个核苷酸。 抗原表位的大小与相应抗体的抗原结合部位相适合。 一个抗原表位的特异性由组成它的所有残基共同决定,但其中有些残基在与抗体结合时比其它残基起更大作用,这些残基被称为免疫显性基团。 抗原表位--分类按表位结构不同,分为连续性抗原表位和不连续性抗原表位。 连续性表位又称线性表位,是由肽链上顺序连续的氨基酸组成通常这种结合比较弱,因为小肽并不含完整天然蛋白的构象,在多数情况下这种表位可能只代表了复杂表位的一部分。对其研究依赖于多肽固相化学合成技术。 后者又称构象型抗原表位,是由那些空间邻近但顺序上不连续的氨基酸组成。按照与抗原受体细胞结合不同,分为B细胞抗原表位和T细胞抗原表位。研究意义抗原表位研究方法研究方法2.合成肽库方法该法先利用基因克隆技术将合成的一组寡核苷酸混合物(小肽基因混合物)克隆至线性噬菌体基因组中,使之以融合蛋白的形式在噬菌体的外壳蛋白的氨基端表达。再利用生物素或酶标记的抗体筛出特异的噬菌体,并进行扩增,再筛选,从结合特异抗体的噬菌体DNA序列推断出氨基酸序列,并合成相应的短肽,验证筛选结果。 用此法检测的抗原表位有人H铁蛋白、蓝舌病病毒的外壳蛋白VP5等。此技术于1992年由R.Frank发展出来,它主要是将涵盖所有抗原氨基酸序列的缩氨酸合成于固定的表面,并与抗血清标定,此法可鉴定线性抗原表位。 应用肽合成技术合成连续的重叠的5~7肽,将这些合成的肽与相应的抗体反应,分析检测结果,以确定阳性反应片段。 这一技术要求有明确的抗原的一级结构,并且检测结果为抗原线性表位。 该法应用广泛,已研究抗原表位的蛋白有HIVgp41、寄生虫蛋白、烟草花叶病毒(TMV)、Fy6蛋白、鸭肝炎B病毒(DHBV)等。 4表位作图研究方法--表位作图研究方法(1)亲水性方案(Hydrophilicity) Nozaki-Tanfordscale,Eisenbergscale,Kyte-Doolittlescale,HPLCscale,Hopp-Woodsscale Hopp-Woods方案认为:蛋白质抗原的氨基酸残基可分为疏水性和亲水性两类。在机体内,疏水性残基一般埋在蛋白内部,而亲水性残基位于表面,因此蛋白的亲水部位与蛋白抗原表位有密切的联系。 Hopp-Woods方案是以残基由有机相环境转移到水相环境的自由能为依据计算各个氨基酸的亲水性。现已明确,亲水性部位与抗原表位并无很好的一致性,即高亲水性部位不一定是表位,表位也不一定是亲水性部位。(2)可及性方案(Accessibility) 如Janin可及性参数,指蛋白质抗原中氨基酸残基被溶剂分子接触的可能性。它反映了蛋白质抗原内、外各层残基的分布情况。(3)抗原性方案(Antigenicity) 对20个已研究得很透的蛋白质的69个连续位点的606个氨基酸统计分析,Welling建立了抗原性刻度。每个氨基酸用出现在抗原区的频率描述,此频率除以各氨基酸在所有蛋白质中的频率就可推出此刻度值。 该法研究表明,疏水性氨基酸残基对抗原表位形成亦有贡献。 缺点是其所用的数据库有限,并且连续位点内的残基被认为是同等重要的。显然那些不重要的残基归入计算会明显降低相关性。(4)可塑性方案(Flexibility) 指蛋白抗原构象不是刚性不变的,其多肽链骨架有一定程度的活动性,活动性强的氨基酸残基即可塑性大的位点,易形成抗原表位。Karplas和Schulz基于已知结构的31个蛋白质,发展了一种预测蛋白质片段活动性的方法。 (5)电荷分布方案(Chargedistribution) 认为对碱性抗原特异的抗体多趋于酸性,对酸性抗原特异的抗体多趋于碱性。(6)二级结构预测方案(Secondarystructure) 认为β转角结构为凸出结构,多出现在蛋白质抗原表面,利于与抗体嵌合,较可能成为抗原表位。而α螺旋、β片层结构规则不易形变,较难嵌和抗体,一般不作为抗原表位。 可预测蛋白质β转角的有Chou-Fasman,Garnier,Cohen等方法。其中各种方法预测的成功率均不超过65%。一般认为Cohen方法对转角的预测正确率很高,对于已知折叠类型的蛋白质(αα类,ββ类,α/β类)正确率高达95%,对于未知结构类型的蛋白质,可用3种类型分别预测,3类预测一致