预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共35页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

备战中考数学易错题精选-二次函数练习题及详细答案 一、二次函数 1.如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。 (1)求抛物线的解析式; (2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由; (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。 【答案】解:(1);(2)存在,P(,);(3)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-3). 【解析】 【分析】 (1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解. (2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件. (3)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可. 【详解】 解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2, ∴y=2x﹣6, 令y=0,解得:x=3, ∴B的坐标是(3,0). ∵A为顶点, ∴设抛物线的解析为y=a(x﹣1)2﹣4, 把B(3,0)代入得:4a﹣4=0, 解得a=1, ∴y=(x﹣1)2﹣4=x2﹣2x﹣3. (2)存在. ∵OB=OC=3,OP=OP, ∴当∠POB=∠POC时,△POB≌△POC, 此时PO平分第二象限,即PO的解析式为y=﹣x. 设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍), ∴P(,). (3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB, ∴,即=,∴DQ1=, ∴OQ1=,即Q1(0,-); ②如图,当∠Q2BA=90°时,△BOQ2∽△DOB, ∴,即, ∴OQ2=,即Q2(0,); ③如图,当∠AQ3B=90°时,作AE⊥y轴于E, 则△BOQ3∽△Q3EA, ∴,即 ∴OQ32﹣4OQ3+3=0,∴OQ3=1或3, 即Q3(0,﹣1),Q4(0,﹣3). 综上,Q点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣3). 2.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元. (1)求w与x之间的函数关系式; (2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元? 【答案】(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润乘以销售量即可得到每天的销售利润,即然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;(3)求所对应的自变量的值,即解方程然后检验即可. 【详解】 (1) w与x的函数关系式为: (2) ∴当时,w有最大值.w最大值为3200. 答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当时, 解得: ∵想卖得快, 不符合题意,应舍去. 答:销售单价应定为100元. 3.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3. (1)求抛物线的解析式; (2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围; (3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0"(m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标. 【答案】(1)y=-x2+2x+3;(2);(3)t=1,(1+,2)和(1-,2). 【解析】 【分析】 (1)当x=