预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共117页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学人教版选修2-3全套教案 第一章计数原理 1.1分类加法计数原理和分步乘法计数原理(第一课时) 1分类加法计数原理 (1)提出问题 问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码? 问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? (2)发现新知 分类加法计数原理完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法.那么完成这件事共有 种不同的方法. (3)知识应用 例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下: A大学B大学 生物学数学 化学会计学 医学信息技术学 物理学法学 工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢? 分析:由于这名同学在A,B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A,B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 5+4=9(种). 变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种? 探究:如果完成一件事有三类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,在第3类方案中有种不同的方法,那么完成这件事共有多少种不同的方法? 如果完成一件事情有类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳: 完成一件事情,有n类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法……在第n类办法中有种不同的方法.那么完成这件事共有 种不同的方法. 理解分类加法计数原理: 分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以, 第一类,m1=1×2=2条第二类,m2=1×2=2条 第三类,m3=1×2=2条 所以,根据加法原理,从顶点A到顶点C1最近路线共有N=2+2+2=6条 练习:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出l人来完成这件工作,不同选法的种数是_;(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B的路线有_条. 1.1分类加法计数原理和分步乘法计数原理(第二课时) 2分步乘法计数原理 (1)提出问题 问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以,,…,,,…的方式给教室里的座位编号,总共能编出多少个不同的号码? 用列举法可以列出所有可能的号码: 我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码. (2)发现新知 分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法.那么完成这件事共有种不同的方法. (3)知识应用 例1.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法? 分析:选出一组参赛代表,可以分两个步骤.第l步选男生.第2步选女生. 解:第1步,从30名男生中选出1人,有30种不同选择; 第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30×24=720 种不同的选法. 一般归纳: 完成一件事情,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……做第n步有种不同的方法.那么完成这件事共有 种不同的方法. 理解分步乘法计数原理: 分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题 ②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分