预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.3离散型随机变量的均值与方差 2.3.1离散型随机变量的均值 教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望. 过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟 练地应用它们求相应的离散型随机变量的均值或期望。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文 价值。 教学重点:离散型随机变量的均值或期望的概念 教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型) 5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值xi(i=1,2,…)的概率为,则称表 ξx1x2…xi…PP1P2…Pi…为随机变量ξ的概率分布,简称ξ的分布列 6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1. 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是 ,(k=0,1,2,…,n,). 于是得到随机变量ξ的概率分布如下: ξ01…k…nP……称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p). 8.离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么 (k=0,1,2,…,).于是得到随机变量ξ的概率分布如下: ξ123…k…P……称这样的随机变量ξ服从几何分布 记作g(k,p)=,其中k=0,1,2,…,. 二、讲解新课: 根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下 ξ45678910P0.020.040.060.090.280.290.22在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数ξ的分布列, 我们可以估计,在n次射击中,预计大约有 次得4环; 次得5环; ………… 次得10环. 故在n次射击的总环数大约为 , 从而,预计n次射击的平均环数约为 . 这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平. 对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数: …. 1.均值或数学期望:一般地,若离散型随机变量ξ的概率分布为 ξx1x2…xn…Pp1p2…pn…则称……为ξ的均值或数学期望,简称期望. 2.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3.平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值 4.均值或期望的一个性质:若(a、b是常数),ξ是随机变量,则η也是随机变量,它们的分布列为 ξx1x2…xn…η……Pp1p2…pn…于是…… =……)……) =, 由此,我们得到了期望的一个性质: 5.若ξB(n,p),则Eξ=np 证明如下: ∵, ∴0×+1×+2×+…+k×+…+n×. 又∵, ∴++…++…+. 故若ξ~B(n,p),则np. 三、讲解范例: 例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望 解:因为, 所以 例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是