预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题三圆的证明与计算 类型一切线的判定 判定某直线是圆的切线,首先看是否有圆的半径过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直. (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD, (1)若BC=3,AB=5,求AC的值; (2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线. 【分析】(1)根据直径所对的圆周角为直角,利用勾股定理求AC的长;(2)连接OC,利用AC是∠DAB的平分线,证得∠OAC=∠CAD,再结合半径相等,可得OC∥AD,进而结论得证. 1.(2016·六盘水)如图,在⊙O中,AB为直径,D,E为圆上两点,C为圆外一点,且∠E+∠C=90°. (1)求证:BC为⊙O的切线; (2)若sinA=eq\f(3,5),BC=6,求⊙O的半径. 2.(2017·济宁)如图,已知⊙O的直径AB=12,弦AC=10,D是eq\o(BC,\s\up8(︵))的中点,过点D作DE⊥AC,交AC的延长线于点E. (1)求证:DE是⊙O的切线; (2)求AE的长. 类型二切线的性质 已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题. (2016·资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD. (1)求证:∠A=∠BDC; (2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长. 【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长. 3.(2016·南平)如图,PA,PB是⊙O切线,A,B为切点,点C在PB上,OC∥AP,CD⊥AP于点D. (1)求证:OC=AD; (2)若∠P=50°,⊙O的半径为4,求四边形AOCD的周长(精确到0.1,参考数据sin50°≈0.77,cos50°≈0.64,tan50°≈1.19). 4.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,eq\o(CD,\s\up8(︵))=eq\o(CE,\s\up8(︵)). (1)求证:OA=OB; (2)已知AB=4eq\r(3),OA=4,求阴影部分的面积. 类型三圆与相似的综合 圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定及性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径. (2016·荆门)如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E. (1)求证:CE是⊙O的切线; (2)若AE=1,CE=2,求⊙O的半径. 【分析】(1)连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC∥FD,再证得OC⊥CE即可;(2)连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可求得半径. 5.(2017·德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点.以AC为直径的⊙O交AB于点E. (1)求证:DE是⊙O的切线; (2)若AE∶EB=1∶2,BC=6,求AE的长. 6.(2017·黄冈)如图,已知MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN. 求证:(1)DE是⊙O的切线; (2)ME2=MD·MN. 7.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E. (1)求证:∠BDC=∠A; (2)若CE=4,DE=2,求AD的长. 参考答案 【例1】(1)∵AB是⊙O的直径,点C在⊙O上, ∴∠ACB=90°, ∴AC=eq\r(AB2-BC2)=4. (2)如图,连接OC, ∵AC平分∠DAB, ∴∠OAC=∠CAD. ∵OA=OC,∴∠OAC=∠OCA, ∴∠OCA=∠CAD, ∴OC∥AD. ∵AD⊥CD,∴OC⊥CD. ∵OC是⊙O的半径,∴直线CD是⊙O的切线. 【变式训练】 1.(1)证明:∵∠A与∠E所对的弧都是eq\o(BD,\s\up8(︵))