预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

【黄冈中考】备战2012年中考数学——操作探究的押轴题解析汇编二 操作探究 1.(2011,天津,18,3分)如图,有一张长为5宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形。 (Ⅰ)该正方形的边长为(结果保留根号); (Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程:。 【解题思路】:(Ⅰ)抓住正方形与长方形面积相等这个条件; (Ⅱ)多次尝试,比拼耐心;关键是构造长为的线段,要求只能用两条裁剪线; 【答案】:(Ⅰ); (Ⅱ)如图,先作出BN=(BM=4,MN=1,∠MNB=90°); 再画出两条裁剪线AK,BE(AK=BE=); 后平移△ABE和△ADK,所得到的四边形BEFG即为所求。 【点评】:本题以正方形判定、图形变换等知识为载体,综合考察了动手操作、探究创新等多方面能力,难点在于找到解题切入点,不断尝试;(Ⅰ)难度较小,(Ⅱ)难度较大。 2.(2011山东滨州,12,3分)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为() A.1B.2C.3D.4 【解题思路】以上图形一定能被拼成:AE与BE重合拼成邻边不等的矩形;AD与DC重合拼成等腰梯形;AD与CD重合拼成有一个角为锐角的菱形;不能拼成正方形。 【答案】C 【点评】考察了学生的能手能力,可以通过实际操作来完成,当然也有图形判断方面的考察,有三个角是90°的四边形是矩形,有两个角相等的梯形是等腰梯形,邻边相等的平行四边形是菱形等。难度中等。 23.(本小题满分9分) (2011山东滨州,23,9分)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论。 (1)如图①△ABC中,∠C=90°,∠A=24° 第23题图① ①作图: ②猜想: ③验证: (2)如图②△ABC中,∠C=84°,∠A=24°. 第23题图② ①作图: ②猜想: ③验证: 【解题思路】在三角形中找到等腰三角形的方法就是做一边的垂直平分线,然后根据角的度数来判断是不是等腰三角形。第一题可以通过做AC、BC边的垂直平分线来完成。第二题可以通过做AB边的垂直平分线来完成。再找一下角的关系。 【答案】 (1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可, 在边AB上找出所需要的点D,则直线CD即为所求………………2分 ②猜想:∠A+∠B=90°,………………4分 ③验证:如在△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。………………5分 (2)答:①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可。 在边AB上找出所需要的点D,则直线CD即为所求………………6分 ②猜想:∠B=3∠A………………8分 ③验证:如在△ABC中,∠A=32°,∠B=96,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。………………9分 【点评】本题考察了学生的探究问题的能力,通过实验来总结问题的规律,可以利用你的结论来解决其他的问题。难度较高。 24.(山东省威,24,11分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK. (1)若∠1=70°,求∠MKN的度数; (2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由. (3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值. 【解题思路】(1)利用折叠角相等,结合平行线的性质很容易得到答案.(2)△MNK的面积的范围,可以把KN视为底边,其高是定值1,因而求的线段NK的范围,即可得到△MNK的面积的范围.(3)△MNK的面积最大,只需NK的值最大,结合折叠分两种情况来讨论. 【答案】解:(1)在矩形ABCD中,AM∥DN, ∴∠KNM=∠1,∵∠KMN=∠1, ∴∠KNM=∠KMN,∵∠1=70°, ∴∠KNM=∠KMN=70°,∴∠MKN=40°. (2)不能. 过M作ME⊥DN,垂足为E,则ME==AD=1, ∴由(1)知:∠KMN=