预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.5平面向量应用举例 一、教材分析 向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。 二、教学目标 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节〞和生活中的实际问题 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。 三、教学重点难点 重点:理解并能灵活运用向量加减法与向量数量积的法那么解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析 在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析那么是其中最根本的根底知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。 五、教学方法 1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。 2.学案导学:见后面的学案 3.新授课教学根本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习本节课本上的根本内容,初步理解向量在平面几何和物理中的 应用 2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教学过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 (二〕情景导入、展示目标 教师首先提问:〔1〕假设O为重心,那么++= 〔2〕水渠横断面是四边形,=,且|=|,那么这个四边形 为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系 (3)两个人提一个旅行包,夹角越大越费力.为什么 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这局部,检查学生预习情况并让学生把预习过程中的疑惑说出来。 〔设计意图:步步导入,吸引学生的注意力,明确学习目标。〕 〔三〕合作探究、精讲点拨。 探究一:〔1〕向量运算与几何中的结论"假设,那么,且所在直线平行或重合"相类比,你有什么体会〔2〕由学生举出几个具有线性运算的几何实例. 教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来:例如,向量数量积对应着几何中的长度.如图:平行四边行中,设=,=,那么〔平移〕,,〔长度〕.向量,的夹角为.因此,可用向量方法解决平面几何中的一些问题。通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果"翻译"成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用 例1.证明:平行四边形两条对角线的平方和等于四条边的平方和. :平行四边形ABCD. 求证:. 分析:用向量方法解决涉及长度、夹角的问题时,我们常常要考虑向量的数量积.注意到,,我们计算和. 证明:不妨设a,b,那么 a+b,a-b,|a|2,|b|2. 得(a+b)·(a+b) =a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2.① 同理|a|2-2a·b+|b|2.② ①+②得2(|a|2+|b|2)=2(). 所以,平行四边形两条对角线的平方和等于四条边的平方和. 师:你能用几何方法解决这个问题吗 让学生体会几何方法与向量方法的区别与难易情况。 师:由于向量能够运算,因此它在解决某些几何问题时具有优越性,他把一个思辨过程变成了一个算法过程,可以按照一定的程序进行运算操作,从而降低了思考问题的难度. 用向量方法解决平面几何问题,主要是下面三个步骤, ⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ⑶把运算结果“翻译〞成几何关系. 变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设〔1〕证明A、O、E三点共线;〔2〕用表示向量。 例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗 分析:由于R、T是对角线AC上两点,所以要判断AR、RT、TC之间的关系,只需要分别判断AR、RT、TC与AC之间的关系即可. 解:设a,b,那么a+b. 由与共线,因此。存在实数m,使得=m(a+b). 又由与共线 因此存在实数n,使得=n=n(b-a). 由=n,得m(a+b)=a+n(b-a).