预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题 1.已知表示取三个数中最小的那个数.例如:当时,,当时,则的值为() A. B. C. D. 2.已知:表示不超过的最大整数,例:,令关于的函数(是正整数),例:=1,则下列结论错误的是() A. B. C. D.或1 3.设记号*表示求、算术平均数的运算,即,则下列等式中对于任意实数,,都成立的是(). ①;②; ③;④. A.①②③ B.①②④ C.①③④ D.②④ 4.已知,,是数轴上三点,点是线段的中点,点,对应的实数分别为和,则点对应的实数是() A. B. C. D. 5.下列命题是真命题的有()个 ①两个无理数的和可能是无理数; ②两条直线被第三条直线所截,同位角相等; ③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A.2 B.3 C.4 D.5 6.已知T1=,T2=,T3=,,Tn=,其中为正整数.设Sn=T1+T2+T3++Tn,则S2021值是() A. B. C. D. 7.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为.以下四个数中是“水仙花数”的是() A.135 B.220 C.345 D.407 8.若的整数部分为a,小数部分为b,则a-b的值为() A. B. C. D. 9.下列命题中,①81的平方根是9;②的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤,其中正确的个数有() A.1 B.2 C.3 D.4 10.按如图所示的运算程序,能使输出y值为1的是() A. B. C. D. 二、填空题 11.观察下列各式: ===2,即=2 ===3,即=3,那么=_____. 12.若|x|=3,y2=4,且x>y,则x﹣y=_____. 13.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______. 14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____. 15.对于正整数n,定义其中表示n的首位数字、末位数字的平方和.例如:,.规定,.例如:,.按此定义_____. 16.对于数x,符号[x]表示不大于x的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[]=2的整数解为_____. 17.定义一种新运算,其规则是:当时,,当时,,当时,,若,则____________. 18.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______. 19.已知与互为相反数,则的值是____. 20.材料:一般地,n个相同因数a相乘:记为.如,此时3叫做以2为底的8的对数,记为(即).那么_____,_____. 三、解答题 21.[阅读材料] ∵,即,∴,∴的整数部分为1,∴的小数部分为 [解决问题] (1)填空:的小数部分是__________; (2)已知是的整数部分,是的小数部分,求代数式的平方根为______. 22.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2于是可用来表示的小数部分.请解答下列问题: (1)的整数部分是_______,小数部分是_________; (2)如果的小数部分为的整数部分为求的值; (3)已知:其中是整数,且求的平方根. 23.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …… 在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25; (2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b的式子表示这类“数字对称等式”的规律是_______. 24.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,