预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

精选中考数学易错题专题复习初中数学旋转附答案 一、旋转 1.(操作发现) (1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕 点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于 点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF, EF. ①求∠EAF的度数; ②DE与EF相等吗?请说明理由; (类比探究) (2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合, 再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直 角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使 ∠DCE=45°,连接AF,EF.请直接写出探究结果: ①∠EAF的度数; ②线段AE,ED,DB之间的数量关系. 【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2 【解析】 试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出 ∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°; ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可; (2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由 SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°; ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定 理得出AE2+AF2=EF2,即可得出结论. 试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC, ∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD. 在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS), ∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°; ②DE=EF.理由如下: ∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF; (2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC, ∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC, ∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB, ∴∠EAF=∠BAC+∠CAF=90°; ②AE2+DB2=DE2,理由如下: ∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2. 2.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空: 当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为 边,作等边三角形ABD和等边三角形ACE,连接CD,BE. ①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值. (3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值 及此时点P的坐标. 【答案】(1)CB的延长线上,a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3) 满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4. 【解析】 【分析】 (1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2) ①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段 BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM, 将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形, 根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段 BN取得最大值,即