预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

最新可编辑word文档 最新可编辑word文档 最新可编辑word文档 汽车维修技师 专业论文 标题:浅谈可变气门正时技术 关键词:可变配气正时内燃机配机机构 工作单位:临沂万发汽学校 作者:张晓军 提交日期:2012-10-27 摘要 本文介绍了从进气晚关角及进排气的动态效应几方面着手,不断改进发动机的配气相位以及进排气系统,使发动机的实际性能曲线逐步接近计算机仿真曲线。配气相位、进气门间隙、排气门间隙、转速、负荷五个调整参数之间是相互影响的。 通过在配气机构多刚体模型中引入柔性体,描述了配气机构的动力学性能;建立了柔性体气门弹簧,分析了气门弹簧动刚度的非线性行为,并且依据模态技术计算得到其动态应力;该方法为优化设计配气机构等机械产品及对其进行疲劳性能研究提供了依据。该仪器可检测各种汽、柴油发动机的启动性能、高压点火性能、燃油喷射性能、充电性能、动力性能、配气相位、发动机异响震动分析等30余种技术参数,并分析故障产生的原因、检测过程中,可随时显示各种波形及技术参数和结果并可随机打印,该仪器内存有一百多种国内外发动机技术参数,内容十分丰富,随时可以与检测结果对比。PassatB5轿车有4缸和6缸两种发动机,4缸机有4G54与4G64两种型号,6缸机型号为6G72,其配气机构均采用顶置凸轮轴式配气机构。介绍了气门间隙自动调整器的结构、工作原理,以及其维护与保养。 关键词:可变配气正时内燃机配机机构 一、可变气门正时技术 传统的发动机气门正时系统,是一种配气相位即气门开启和关闭都一成不变机械系统,这种配气系统很难满足发动机在多种工况对配气的需要,不能满足发动机在各种转速工况下均输出强劲的动力要求。而可变气门正时系统是一种改变气门开启时间或开启大小的电控系统,通过在不同的转速下为车辆匹配更合理的气门开启和关闭,来增强车辆扭矩输出的均衡性,提高发动机功率并降低车辆的油耗。 1.可变气门正时系统的原理 四行程发动机在工作过程中,吸入新鲜空气,排出高温废气。这种进气和排气的全过程,称为换气过程。在高速发动机中,每个循环的进排气过程时间极短,在这极短的时间内,被吸入的可燃混合气越多,废气排的越干净、越彻底,发动机发出的功率就可能越大。反之,发出的功率就越小,发动机的动力性和经济性就会下降。因此,需要适时开启和关闭进排气门。由内燃机原理可知,气门的开闭位置和活塞的位置有关,活塞的位置和曲轴的转角有关,用曲轴转角来表示气门的开闭时间,就是配气相位。从配气相位图中,可以看出,发动机的进排气门的开启和关闭分别提前打开和延迟关闭。以便争取最大的“时间断面”。把气门提前开启时刻称作提前角,气门迟后关闭时刻称作迟闭角。由于排气迟后关闭和进气提前开启,这就存在着一个进、排气门同时开启的气门重叠阶段,气门叠开时的曲轴转角称为气门重叠角。 实验证明,在高转速时,气门重叠角大一些对发动机是十分有利的。就配气相位而言,气门重叠角的大小与发动机的转速有关,若发动机转速高,则气门重叠角就相应设置大些。 由上述可知,配气相位与发动机的转速有关。原则上,一种配气相位只适合一种发动机转速。配气相位取决于凸轮轮廓的形状,配气相位对发动机的性能影响很大,且由于凸轮型线的不同,也决定了发动机是高速性能还是低速性能。如果是高速性能的发动机,则在高转速范围功率很大,但在中低转速范围功率下降很多;反之,则在高转速范围功率下降很多。现代发动机要求在任何转速范围都能获得较大的功率,这就要求配气相位能够根据发动机的工作情况及时做出调整,因此,可变配气相位技术应运而生。 2.可变配气相位调整原理 从配气相位图上可以看出,活塞从上止点移到下止点的进气过程中,进气门会提前开启和延迟关闭;当发动机做功完毕后,活塞从下止点移到上止点的排气过程中,排气门会提前开启和延迟关闭。这样,必然会出现进、排气门同时开启的时刻,即气门重叠阶段,有可能会造成废气倒流,为了消除这一缺陷,采用了“可变式”的气门驱动机构。 可变式气门驱动机构就是在发动机低速工作时减少气门行程,而在发动机高速时增大气门行程,改变气门重叠阶段的时间,使发动机在高转速时能提供强大的功率,在低转速时又能产生足够的扭矩,从而改善发动机的工作性能。即气门可变驱动机构能根据汽车的运行状况,随时改变配气相位,改变气门升程或气门开启的持续时间。可变配气相位的调整原理: 3.可变配气相位技术条件 理想的配气相位应满足以下条件: 1)低速时,采用较小的气门叠开角和较小的气门升程,防止汽缸内新鲜充量向进气系统倒流,以增加扭矩,提高燃油经济性。 2)高速时,应具有最大气门升程和进气门迟闭角,最大限度的减小流动阻力,充分利用流动惯性,提高充气系数,以满足动力性要求。 3)能够对进气门从开启到关闭的持续期进行调整,以实现最佳的进气