预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

简单的盈亏问题 一、教学目标: 1、知道“盈”与“亏”的含义,了解“盈亏问题”的特征,感受数学问题的趣味性。 2、在探索解决问题的过程中,学会解“盈亏问题”的方法,培养学生的逻辑推理能力。 3、让学生体会到数学问题在日常生活中的应用。 二、教学重、难点:弄清盈、亏与两次分得差的关系。 三、道具使用:白板笔 四、课堂类型:讲练结合 五、教学过程: (一)知识导航 幼儿园老师把一袋水果糖分给小朋友,每人分2块,发现多了10块;每人改分5块,又发现少了5块。类似的问题在我们日常生活中常常可以看到,其实这些问题都有一个共同的特征——那就是把一定数量的物品平均分给固定的对象,如果按照某种标准分,有多余,我们称之为“盈”;按另一种标准分,分配后又不足,我们称之为“亏”。如何根据盈亏之间的联系,求出所分物品的总量和分配对象的总数,就是数学中的“盈亏问题”。这节课我们就来学习“简单的盈亏问题”。 (二)探索发现 1、出示例1:小朋友分糖,若每人分4粒则多余9粒;若每人分5粒则还缺少6粒。问:有多少个小朋友分多少粒糖? 思考:①小朋友的人数与糖的粒数是怎样的? ②两种不同的分配方案一多(盈)一少(亏)相差多少粒糖? ③相差的原因是什么呢? 解答:小朋友人数:(9+6)÷(5-4)=15(人) 糖果的粒数:4×15+9=69(粒) 或5×15-6=69(粒) 答:有15个小朋友,分69粒糖 2、试一试:小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。问:有几个小朋友?多少粒糖果? 3、比较归纳:由上面两题可得求解盈亏问题的公式: •分配对象总数=盈亏总额÷两次分配数之差 •所分物品总量=分配对象总数×每份数量+盈(-亏) (三)课堂小结:需要注意:两种分配方案的结果可能有以下几种情况 •①一盈,一亏。 •②两盈(大盈、小盈)。 •③两亏(大亏、小亏) •④“一尽一盈”或“一尽一亏” 六、巩固练习:我能行 1、一个汽车队运输一批货物,如果每辆汽车运3500千克,那么货物还剩下5000千克;如果每辆汽车运4000千克,那么货物还剩下500千克。问:这个汽车队有多少辆汽车?要运的货物有多少千克? 分析:题目两次都为盈,即属于两盈的问题: (大盈—小盈)÷两次的分配数之差=分配对象总数 2、王老师去买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还差30元。问:儿童小提琴多少钱一把?王老师带了多少元钱? 分析:题目两次都为亏,即属于两亏的问题 (大亏-小亏)÷两次的分配数之差=分配对象总数 3、某学校买来一批新书。如果每班借20本,则刚好借完;如果每班借24本,则有3个班没书可借。这所学校有几个班?这批新书共有多少本? 分析:刚好借完指不盈不亏,3个班没书可借指亏数为3个班:24×3=72用公式:(盈+亏)÷两次的分配数之差=分配对象总数 4、红星小学去秋游。如果每辆车坐60人。那么有15人上不了车;如果每辆车多坐5人,那么恰好多出一辆车。问:有多少辆车?多少个学生? 分析:15人上不了车指盈数为15,多出一辆车指亏数为一辆车坐的人数:65+5=70用公式:(盈+亏)÷两次的分配数之差=分配对象总数 挑战自我:拓展题 某班学生去划船,如果增加一条船,那么每条船正好坐6人;如果减少一条船,那么每条船就要坐9人。问:学生有多少人? 七、谈收获: 通过这节课的学习,你知道怎样解盈亏问题吗? 八、教学反思: 学生通过学习能很好认识这一类问题,能分清“盈”与“亏”的含义,会解决简单的盈亏问题,同时还应及时练习以达到熟能生巧的目的! 九、板书设计: •①一盈,一亏。 公式:(盈+亏)÷两次的分配数之差=分配对象总数 •②两盈(大盈、小盈) 公式:(大盈—小盈)÷两次的分配数之差=分配对象总数 •③两亏(大亏、小亏) 公式:(大亏-小亏)÷两次的分配数之差=分配对象总数 •④“一尽一盈”或“一尽一亏” 公式:盈÷两次的分配数之差=分配对象总数 亏÷两次的分配数之差=分配对象总数