预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN107679537A(43)申请公布日2018.02.09(21)申请号201710322683.6(22)申请日2017.05.09(71)申请人北京航空航天大学地址100191北京市海淀区学院路37号(72)发明人张浩鹏姜志国张鑫赵丹培谢凤英罗晓燕尹继豪史振威(74)专利代理机构北京慕达星云知识产权代理事务所(特殊普通合伙)11465代理人王鹏(51)Int.Cl.G06K9/46(2006.01)G06K9/62(2006.01)权利要求书2页说明书7页附图2页(54)发明名称一种基于轮廓点ORB特征匹配的无纹理空间目标姿态估计算法(57)摘要本发明提供了一种基于轮廓点ORB特征匹配的无纹理空间目标姿态估计算法,属于数字图像处理技术领域。本发明在三维模型先验的基础上,充分利用投影图像轮廓中所包含的数据信息,利用ORB特征匹配和颜色索引建立从输入图像到目标三维模型的2D-3D特征对应关系,并利用匹配误差构造置信概率矩阵,提出加权的正交投影算法解算无纹理空间目标的六自由度姿态参数。ORB特征提高了轮廓点匹配的准确性并且在初始姿态相对真实姿态有较大偏移的情况下仍具有一定的鲁棒性;本发明充分发掘建立2D-3D对应关系子问题与解算姿态参数子问题之间的联系,利用匹配误差构造置信概率矩阵作为解算姿态参数的先验信息,避免了使用RANSAC算法剔除误匹配点,提高算法的计算效率和精度。CN107679537ACN107679537A权利要求书1/2页1.一种基于轮廓点ORB特征匹配的无纹理空间目标姿态估计算法,其特征在于,包括以下步骤:步骤1、输入空间目标的三维模型和待估计姿态下所成的单目图像;其中三维模型中包含空间目标的顶点坐标以及结构信息,输入的单目图像为灰度图像;步骤2、根据三维模型确定在不同视角下的空间目标投影图像库;步骤3、从空间目标投影图像库中选出与输入图像最相似的投影图像集合,即最相似图集;步骤4、对输入图像和最相似图集中的投影图像进行预处理,并提取轮廓;步骤5、基于轮廓点的ORB特征匹配建立输入图像轮廓和最相似图集中投影图像轮廓之间的2D-2D点对应关系;步骤6、基于颜色索引建立输入图像轮廓到空间目标三维模型之间的2D-3D点对应关系;步骤7、基于投影图像与输入图像匹配准确度构造置信概率矩阵W;步骤8:结合2D-3D对应点的置信概率矩阵对正交投影算法进行改进,提出加权正交投影算法以迭代计算姿态参数;步骤9、根据终止条件判断当前输出姿态参数还是返回步骤2进行下一次迭代计算。2.根据权利要求1所述的一种基于轮廓点ORB特征匹配的无纹理空间目标姿态估计算法,其特征在于,所述步骤2是以Hu矩作为相似性测度从空间目标投影图像库中选出与输入图像最相似的投影图像集合,首先将输入图像和投影图像库中的图像转换为二值图,目标区域为白色,背景区域为黑色,然后计算每一张二值图的Hu矩的七个分量,取前三个分量用于计算相似性:其中I代表输入图像,G代表投影图像,代表输入图像Hu矩的第k个分量,代表投影图像Hu矩的第k个分量。选择计算得到的comp(I,G)值最小的若干张投影图像作为与输入图像最相似的投影图像集合即最相似图集。3.根据权利要求1所述的一种基于轮廓点ORB特征匹配的无纹理空间目标姿态估计算法,其特征在于,所述步骤5中是通过将最相似图集中的每一张投影图像轮廓都与输入图像轮廓进行ORB特征匹配,根据匹配得到的轮廓点对应关系,并利用最小二乘法计算每一张投影图像映射到输入图像的单应矩阵,由单应矩阵可以计算得到第j张投影图像的第q个轮廓点(xjq,yjq)在输入图像上的对应点坐标(xjq',yjq'),“~”表示在齐次意义下相等,m代表最相似图集中投影图像的数量。根据公式(2)可以衡量输入图像轮廓与最相似图集中投影图像轮廓匹配的误差大小,计算公式如下:2CN107679537A权利要求书2/2页Qj代表第j张投影图像的轮廓点个数,是输入图像上与(xjq,yjq)匹配的点,(xjq',yjq')是通过(2)式计算得到。4.根据权利要求1所述的一种基于轮廓点ORB特征匹配的无纹理空间目标姿态估计算法,其特征在于,所述步骤7基于投影图像与输入图像匹配准确度构造置信概率矩阵W。W是n×n的对角矩阵,如公式(4):其中n为2D-3D对应点的数量,对角线元素ωj为第j对2D-3D对应点的置信概率;由于通过步骤7得到的2D-3D对应点中会存在很多多对一的情况,所以需要为每一个三维点确定所对应的二维点,并计算置信概率;本算法首先对同一个三维点所对应的多个二维点做聚类,根据每一个聚类中二维点的聚集程度、二维点的数量和二维点所对应的投影图像的匹配误差大小给该聚类打分,取得分最高的聚类中所有二维