基于Fisher判别准则的胃病分类模型.doc
sy****28
亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于Fisher判别准则的胃病分类模型.doc
基于Fisher判别准则的胃病分类模型摘要本文就胃癌患者、萎缩性胃炎患者以及非胃病患者的分类问题,综合运用系统聚类和Fisher判别的方法建立了基于四个指标的分类判别模型。针对问题一,模型采用系统聚类和Fisher判别的方法,根据题中已知类型的三个样本13,14,15,将混淆的12个样本1~12区别开来,并且使得样本13,14,15在三个类别中。使用SPSS软件求得分类结果,胃癌患者:1,2,4,5,13;萎缩性胃炎患者:3,7,10,11,12,14;非胃病患者:6,8,9,15。针对问题二,本题基于问
基于Fisher的线性判别回归分类算法.docx
基于Fisher的线性判别回归分类算法Fisher的线性判别回归分类算法是一种常用的机器学习算法,在许多实际应用场景中都得到了广泛应用。本文首先介绍了该算法的原理和基本步骤,然后探讨了其优缺点及在实际应用中的局限性。最后,我们结合实际案例,详细分析了该算法在人脸识别中的应用。一、原理和步骤Fisher的线性判别回归分类算法是基于统计学的一种机器学习算法,其主要思想是将样本投影到一个新的低维度空间中,使得不同类别的样本在该空间中的投影点之间最大程度地分开。由此可见,该算法主要包含以下几个步骤:1.构建数据矩
基于改进Fisher判别准则的卷积神经网络设计.docx
基于改进Fisher判别准则的卷积神经网络设计基于改进Fisher判别准则的卷积神经网络设计摘要:卷积神经网络(CNN)是一种强大的深度学习模型,被广泛应用于图像分类、物体识别等计算机视觉任务中。然而,在一些复杂的分类问题中,传统的CNN模型存在一定的局限性。针对这个问题,本文提出了一种基于改进Fisher判别准则的卷积神经网络设计。通过在卷积层和全连接层引入Fisher判别准则,能够有效地增强模型的分类性能和泛化能力。实验证明,该设计在多个图像分类数据集上具有较高的分类准确率,比传统的CNN模型提升了显
基于FCM-Fisher判别分析的难采储量分类.docx
基于FCM-Fisher判别分析的难采储量分类一、引言油气勘探开发活动中,发现储量储层难以形象描述,并且储量分类标准不够科学,难以真实反映地质实际情况。为了充分发挥数据属性的分类能力,本文基于FCM-Fisher判别分析方法,对难采储量分类问题进行了研究。二、FCM-Fisher判别分析方法原理FCM-Fisher判别分析方法是基于模糊聚类与Fisher判别分析的融合方法,它通过Fisher判别分析得到最佳分类超平面,使用Fisher判别分析的权值作为聚类目标函数的权值,从而优化了聚类结果;同时采用模糊聚
基于聚类改进的Fisher与KNN判别分类算法对比研究.docx
基于聚类改进的Fisher与KNN判别分类算法对比研究基于聚类改进的Fisher与KNN判别分类算法对比研究摘要:分类问题是机器学习领域中的重要问题之一。本文针对基于聚类改进的Fisher与KNN判别分类算法展开研究与对比分析。首先,介绍了Fisher与KNN分类算法的原理和应用场景;接着,分析了两种算法的优点和不足;然后,提出了一种基于聚类改进的Fisher算法,并与传统的Fisher算法和KNN算法进行对比实验;最后,通过实验结果分析,展示了基于聚类改进的Fisher算法在分类准确率和效率上的优势。1